You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2960 lines
81 KiB
C

/**
* \file
*
* \brief SAM Serial Communication Interface
*
* Copyright (c) 2014-2019 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#include <hpl_dma.h>
#include <hpl_i2c_m_async.h>
#include <hpl_i2c_m_sync.h>
#include <hpl_i2c_s_async.h>
#include <hpl_sercom_config.h>
#include <hpl_spi_m_async.h>
#include <hpl_spi_m_sync.h>
#include <hpl_spi_s_async.h>
#include <hpl_spi_s_sync.h>
#include <hpl_usart_async.h>
#include <hpl_usart_sync.h>
#include <utils.h>
#include <utils_assert.h>
#ifndef CONF_SERCOM_0_USART_ENABLE
#define CONF_SERCOM_0_USART_ENABLE 0
#endif
#ifndef CONF_SERCOM_1_USART_ENABLE
#define CONF_SERCOM_1_USART_ENABLE 0
#endif
#ifndef CONF_SERCOM_2_USART_ENABLE
#define CONF_SERCOM_2_USART_ENABLE 0
#endif
#ifndef CONF_SERCOM_3_USART_ENABLE
#define CONF_SERCOM_3_USART_ENABLE 0
#endif
#ifndef CONF_SERCOM_4_USART_ENABLE
#define CONF_SERCOM_4_USART_ENABLE 0
#endif
#ifndef CONF_SERCOM_5_USART_ENABLE
#define CONF_SERCOM_5_USART_ENABLE 0
#endif
#ifndef CONF_SERCOM_6_USART_ENABLE
#define CONF_SERCOM_6_USART_ENABLE 0
#endif
#ifndef CONF_SERCOM_7_USART_ENABLE
#define CONF_SERCOM_7_USART_ENABLE 0
#endif
/** Amount of SERCOM that is used as USART. */
#define SERCOM_USART_AMOUNT \
(CONF_SERCOM_0_USART_ENABLE + CONF_SERCOM_1_USART_ENABLE + CONF_SERCOM_2_USART_ENABLE + CONF_SERCOM_3_USART_ENABLE \
+ CONF_SERCOM_4_USART_ENABLE + CONF_SERCOM_5_USART_ENABLE + CONF_SERCOM_6_USART_ENABLE \
+ CONF_SERCOM_7_USART_ENABLE)
/**
* \brief Macro is used to fill usart configuration structure based on
* its number
*
* \param[in] n The number of structures
*/
#define SERCOM_CONFIGURATION(n) \
{ \
n, \
SERCOM_USART_CTRLA_MODE(CONF_SERCOM_##n##_USART_MODE) \
| (CONF_SERCOM_##n##_USART_RUNSTDBY << SERCOM_USART_CTRLA_RUNSTDBY_Pos) \
| (CONF_SERCOM_##n##_USART_IBON << SERCOM_USART_CTRLA_IBON_Pos) \
| (CONF_SERCOM_##n##_USART_TXINV << SERCOM_USART_CTRLA_TXINV_Pos) \
| (CONF_SERCOM_##n##_USART_RXINV << SERCOM_USART_CTRLA_RXINV_Pos) \
| SERCOM_USART_CTRLA_SAMPR(CONF_SERCOM_##n##_USART_SAMPR) \
| SERCOM_USART_CTRLA_TXPO(CONF_SERCOM_##n##_USART_TXPO) \
| SERCOM_USART_CTRLA_RXPO(CONF_SERCOM_##n##_USART_RXPO) \
| SERCOM_USART_CTRLA_SAMPA(CONF_SERCOM_##n##_USART_SAMPA) \
| SERCOM_USART_CTRLA_FORM(CONF_SERCOM_##n##_USART_FORM) \
| (CONF_SERCOM_##n##_USART_CMODE << SERCOM_USART_CTRLA_CMODE_Pos) \
| (CONF_SERCOM_##n##_USART_CPOL << SERCOM_USART_CTRLA_CPOL_Pos) \
| (CONF_SERCOM_##n##_USART_DORD << SERCOM_USART_CTRLA_DORD_Pos), \
SERCOM_USART_CTRLB_CHSIZE(CONF_SERCOM_##n##_USART_CHSIZE) \
| (CONF_SERCOM_##n##_USART_SBMODE << SERCOM_USART_CTRLB_SBMODE_Pos) \
| (CONF_SERCOM_##n##_USART_CLODEN << SERCOM_USART_CTRLB_COLDEN_Pos) \
| (CONF_SERCOM_##n##_USART_SFDE << SERCOM_USART_CTRLB_SFDE_Pos) \
| (CONF_SERCOM_##n##_USART_ENC << SERCOM_USART_CTRLB_ENC_Pos) \
| (CONF_SERCOM_##n##_USART_PMODE << SERCOM_USART_CTRLB_PMODE_Pos) \
| (CONF_SERCOM_##n##_USART_TXEN << SERCOM_USART_CTRLB_TXEN_Pos) \
| (CONF_SERCOM_##n##_USART_RXEN << SERCOM_USART_CTRLB_RXEN_Pos), \
SERCOM_USART_CTRLC_GTIME(CONF_SERCOM_##n##_USART_GTIME) \
| (CONF_SERCOM_##n##_USART_DSNACK << SERCOM_USART_CTRLC_DSNACK_Pos) \
| (CONF_SERCOM_##n##_USART_INACK << SERCOM_USART_CTRLC_INACK_Pos) \
| SERCOM_USART_CTRLC_MAXITER(CONF_SERCOM_##n##_USART_MAXITER), \
(uint16_t)(CONF_SERCOM_##n##_USART_BAUD_RATE), CONF_SERCOM_##n##_USART_FRACTIONAL, \
CONF_SERCOM_##n##_USART_RECEIVE_PULSE_LENGTH, CONF_SERCOM_##n##_USART_DEBUG_STOP_MODE, \
}
/**
* \brief SERCOM USART configuration type
*/
struct usart_configuration {
uint8_t number;
hri_sercomusart_ctrla_reg_t ctrl_a;
hri_sercomusart_ctrlb_reg_t ctrl_b;
hri_sercomusart_ctrlc_reg_t ctrl_c;
hri_sercomusart_baud_reg_t baud;
uint8_t fractional;
hri_sercomusart_rxpl_reg_t rxpl;
hri_sercomusart_dbgctrl_reg_t debug_ctrl;
};
#if SERCOM_USART_AMOUNT < 1
/** Dummy array to pass compiling. */
static struct usart_configuration _usarts[1] = {{0}};
#else
/**
* \brief Array of SERCOM USART configurations
*/
static struct usart_configuration _usarts[] = {
#if CONF_SERCOM_0_USART_ENABLE == 1
SERCOM_CONFIGURATION(0),
#endif
#if CONF_SERCOM_1_USART_ENABLE == 1
SERCOM_CONFIGURATION(1),
#endif
#if CONF_SERCOM_2_USART_ENABLE == 1
SERCOM_CONFIGURATION(2),
#endif
#if CONF_SERCOM_3_USART_ENABLE == 1
SERCOM_CONFIGURATION(3),
#endif
#if CONF_SERCOM_4_USART_ENABLE == 1
SERCOM_CONFIGURATION(4),
#endif
#if CONF_SERCOM_5_USART_ENABLE == 1
SERCOM_CONFIGURATION(5),
#endif
#if CONF_SERCOM_6_USART_ENABLE == 1
SERCOM_CONFIGURATION(6),
#endif
#if CONF_SERCOM_7_USART_ENABLE == 1
SERCOM_CONFIGURATION(7),
#endif
};
#endif
static uint8_t _get_sercom_index(const void *const hw);
static uint8_t _sercom_get_irq_num(const void *const hw);
static void _sercom_init_irq_param(const void *const hw, void *dev);
static uint8_t _sercom_get_hardware_index(const void *const hw);
static int32_t _usart_init(void *const hw);
static inline void _usart_deinit(void *const hw);
static uint16_t _usart_calculate_baud_rate(const uint32_t baud, const uint32_t clock_rate, const uint8_t samples,
const enum usart_baud_rate_mode mode, const uint8_t fraction);
static void _usart_set_baud_rate(void *const hw, const uint32_t baud_rate);
static void _usart_set_data_order(void *const hw, const enum usart_data_order order);
static void _usart_set_mode(void *const hw, const enum usart_mode mode);
static void _usart_set_parity(void *const hw, const enum usart_parity parity);
static void _usart_set_stop_bits(void *const hw, const enum usart_stop_bits stop_bits);
static void _usart_set_character_size(void *const hw, const enum usart_character_size size);
/**
* \brief Initialize synchronous SERCOM USART
*/
int32_t _usart_sync_init(struct _usart_sync_device *const device, void *const hw)
{
ASSERT(device);
device->hw = hw;
return _usart_init(hw);
}
/**
* \brief Initialize asynchronous SERCOM USART
*/
int32_t _usart_async_init(struct _usart_async_device *const device, void *const hw)
{
int32_t init_status;
ASSERT(device);
init_status = _usart_init(hw);
if (init_status) {
return init_status;
}
device->hw = hw;
_sercom_init_irq_param(hw, (void *)device);
uint8_t irq = _sercom_get_irq_num(hw);
for (uint32_t i = 0; i < 4; i++) {
NVIC_DisableIRQ((IRQn_Type)irq);
NVIC_ClearPendingIRQ((IRQn_Type)irq);
NVIC_EnableIRQ((IRQn_Type)irq);
irq++;
}
return ERR_NONE;
}
/**
* \brief De-initialize SERCOM USART
*/
void _usart_sync_deinit(struct _usart_sync_device *const device)
{
_usart_deinit(device->hw);
}
/**
* \brief De-initialize SERCOM USART
*/
void _usart_async_deinit(struct _usart_async_device *const device)
{
NVIC_DisableIRQ((IRQn_Type)_sercom_get_irq_num(device->hw));
_usart_deinit(device->hw);
}
/**
* \brief Calculate baud rate register value
*/
uint16_t _usart_sync_calculate_baud_rate(const uint32_t baud, const uint32_t clock_rate, const uint8_t samples,
const enum usart_baud_rate_mode mode, const uint8_t fraction)
{
return _usart_calculate_baud_rate(baud, clock_rate, samples, mode, fraction);
}
/**
* \brief Calculate baud rate register value
*/
uint16_t _usart_async_calculate_baud_rate(const uint32_t baud, const uint32_t clock_rate, const uint8_t samples,
const enum usart_baud_rate_mode mode, const uint8_t fraction)
{
return _usart_calculate_baud_rate(baud, clock_rate, samples, mode, fraction);
}
/**
* \brief Enable SERCOM module
*/
void _usart_sync_enable(struct _usart_sync_device *const device)
{
hri_sercomusart_set_CTRLA_ENABLE_bit(device->hw);
}
/**
* \brief Enable SERCOM module
*/
void _usart_async_enable(struct _usart_async_device *const device)
{
hri_sercomusart_set_CTRLA_ENABLE_bit(device->hw);
}
/**
* \brief Disable SERCOM module
*/
void _usart_sync_disable(struct _usart_sync_device *const device)
{
hri_sercomusart_clear_CTRLA_ENABLE_bit(device->hw);
}
/**
* \brief Disable SERCOM module
*/
void _usart_async_disable(struct _usart_async_device *const device)
{
hri_sercomusart_clear_CTRLA_ENABLE_bit(device->hw);
}
/**
* \brief Set baud rate
*/
void _usart_sync_set_baud_rate(struct _usart_sync_device *const device, const uint32_t baud_rate)
{
_usart_set_baud_rate(device->hw, baud_rate);
}
/**
* \brief Set baud rate
*/
void _usart_async_set_baud_rate(struct _usart_async_device *const device, const uint32_t baud_rate)
{
_usart_set_baud_rate(device->hw, baud_rate);
}
/**
* \brief Set data order
*/
void _usart_sync_set_data_order(struct _usart_sync_device *const device, const enum usart_data_order order)
{
_usart_set_data_order(device->hw, order);
}
/**
* \brief Set data order
*/
void _usart_async_set_data_order(struct _usart_async_device *const device, const enum usart_data_order order)
{
_usart_set_data_order(device->hw, order);
}
/**
* \brief Set mode
*/
void _usart_sync_set_mode(struct _usart_sync_device *const device, const enum usart_mode mode)
{
_usart_set_mode(device->hw, mode);
}
/**
* \brief Set mode
*/
void _usart_async_set_mode(struct _usart_async_device *const device, const enum usart_mode mode)
{
_usart_set_mode(device->hw, mode);
}
/**
* \brief Set parity
*/
void _usart_sync_set_parity(struct _usart_sync_device *const device, const enum usart_parity parity)
{
_usart_set_parity(device->hw, parity);
}
/**
* \brief Set parity
*/
void _usart_async_set_parity(struct _usart_async_device *const device, const enum usart_parity parity)
{
_usart_set_parity(device->hw, parity);
}
/**
* \brief Set stop bits mode
*/
void _usart_sync_set_stop_bits(struct _usart_sync_device *const device, const enum usart_stop_bits stop_bits)
{
_usart_set_stop_bits(device->hw, stop_bits);
}
/**
* \brief Set stop bits mode
*/
void _usart_async_set_stop_bits(struct _usart_async_device *const device, const enum usart_stop_bits stop_bits)
{
_usart_set_stop_bits(device->hw, stop_bits);
}
/**
* \brief Set character size
*/
void _usart_sync_set_character_size(struct _usart_sync_device *const device, const enum usart_character_size size)
{
_usart_set_character_size(device->hw, size);
}
/**
* \brief Set character size
*/
void _usart_async_set_character_size(struct _usart_async_device *const device, const enum usart_character_size size)
{
_usart_set_character_size(device->hw, size);
}
/**
* \brief Retrieve SERCOM usart status
*/
uint32_t _usart_sync_get_status(const struct _usart_sync_device *const device)
{
return hri_sercomusart_read_STATUS_reg(device->hw);
}
/**
* \brief Retrieve SERCOM usart status
*/
uint32_t _usart_async_get_status(const struct _usart_async_device *const device)
{
return hri_sercomusart_read_STATUS_reg(device->hw);
}
/**
* \brief Write a byte to the given SERCOM USART instance
*/
void _usart_sync_write_byte(struct _usart_sync_device *const device, uint8_t data)
{
hri_sercomusart_write_DATA_reg(device->hw, data);
}
/**
* \brief Write a byte to the given SERCOM USART instance
*/
void _usart_async_write_byte(struct _usart_async_device *const device, uint8_t data)
{
hri_sercomusart_write_DATA_reg(device->hw, data);
}
/**
* \brief Read a byte from the given SERCOM USART instance
*/
uint8_t _usart_sync_read_byte(const struct _usart_sync_device *const device)
{
return hri_sercomusart_read_DATA_reg(device->hw);
}
/**
* \brief Check if USART is ready to send next byte
*/
bool _usart_sync_is_ready_to_send(const struct _usart_sync_device *const device)
{
return hri_sercomusart_get_interrupt_DRE_bit(device->hw);
}
/**
* \brief Check if USART transmission complete
*/
bool _usart_sync_is_transmit_done(const struct _usart_sync_device *const device)
{
return hri_sercomusart_get_interrupt_TXC_bit(device->hw);
}
/**
* \brief Check if USART is ready to send next byte
*/
bool _usart_async_is_byte_sent(const struct _usart_async_device *const device)
{
return hri_sercomusart_get_interrupt_DRE_bit(device->hw);
}
/**
* \brief Check if there is data received by USART
*/
bool _usart_sync_is_byte_received(const struct _usart_sync_device *const device)
{
return hri_sercomusart_get_interrupt_RXC_bit(device->hw);
}
/**
* \brief Set the state of flow control pins
*/
void _usart_sync_set_flow_control_state(struct _usart_sync_device *const device,
const union usart_flow_control_state state)
{
(void)device;
(void)state;
}
/**
* \brief Set the state of flow control pins
*/
void _usart_async_set_flow_control_state(struct _usart_async_device *const device,
const union usart_flow_control_state state)
{
(void)device;
(void)state;
}
/**
* \brief Retrieve the state of flow control pins
*/
union usart_flow_control_state _usart_sync_get_flow_control_state(const struct _usart_sync_device *const device)
{
(void)device;
union usart_flow_control_state state;
state.value = 0;
state.bit.unavailable = 1;
return state;
}
/**
* \brief Retrieve the state of flow control pins
*/
union usart_flow_control_state _usart_async_get_flow_control_state(const struct _usart_async_device *const device)
{
(void)device;
union usart_flow_control_state state;
state.value = 0;
state.bit.unavailable = 1;
return state;
}
/**
* \brief Enable data register empty interrupt
*/
void _usart_async_enable_byte_sent_irq(struct _usart_async_device *const device)
{
hri_sercomusart_set_INTEN_DRE_bit(device->hw);
}
/**
* \brief Enable transmission complete interrupt
*/
void _usart_async_enable_tx_done_irq(struct _usart_async_device *const device)
{
hri_sercomusart_set_INTEN_TXC_bit(device->hw);
}
/**
* \brief Retrieve ordinal number of the given sercom hardware instance
*/
static uint8_t _sercom_get_hardware_index(const void *const hw)
{
Sercom *const sercom_modules[] = SERCOM_INSTS;
/* Find index for SERCOM instance. */
for (uint32_t i = 0; i < SERCOM_INST_NUM; i++) {
if ((uint32_t)hw == (uint32_t)sercom_modules[i]) {
return i;
}
}
return 0;
}
/**
* \brief Retrieve ordinal number of the given SERCOM USART hardware instance
*/
uint8_t _usart_sync_get_hardware_index(const struct _usart_sync_device *const device)
{
return _sercom_get_hardware_index(device->hw);
}
/**
* \brief Retrieve ordinal number of the given SERCOM USART hardware instance
*/
uint8_t _usart_async_get_hardware_index(const struct _usart_async_device *const device)
{
return _sercom_get_hardware_index(device->hw);
}
/**
* \brief Enable/disable USART interrupt
*/
void _usart_async_set_irq_state(struct _usart_async_device *const device, const enum _usart_async_callback_type type,
const bool state)
{
ASSERT(device);
if (USART_ASYNC_BYTE_SENT == type || USART_ASYNC_TX_DONE == type) {
hri_sercomusart_write_INTEN_DRE_bit(device->hw, state);
hri_sercomusart_write_INTEN_TXC_bit(device->hw, state);
} else if (USART_ASYNC_RX_DONE == type) {
hri_sercomusart_write_INTEN_RXC_bit(device->hw, state);
} else if (USART_ASYNC_ERROR == type) {
hri_sercomusart_write_INTEN_ERROR_bit(device->hw, state);
}
}
/**
* \internal Retrieve ordinal number of the given sercom hardware instance
*
* \param[in] hw The pointer to hardware instance
* \return The ordinal number of the given sercom hardware instance
*/
static uint8_t _get_sercom_index(const void *const hw)
{
uint8_t sercom_offset = _sercom_get_hardware_index(hw);
uint8_t i;
for (i = 0; i < ARRAY_SIZE(_usarts); i++) {
if (_usarts[i].number == sercom_offset) {
return i;
}
}
ASSERT(false);
return 0;
}
/**
* \brief Init irq param with the given sercom hardware instance
*/
static void _sercom_init_irq_param(const void *const hw, void *dev)
{
}
/**
* \internal Initialize SERCOM USART
*
* \param[in] hw The pointer to hardware instance
*
* \return The status of initialization
*/
static int32_t _usart_init(void *const hw)
{
uint8_t i = _get_sercom_index(hw);
if (!hri_sercomusart_is_syncing(hw, SERCOM_USART_SYNCBUSY_SWRST)) {
uint32_t mode = _usarts[i].ctrl_a & SERCOM_USART_CTRLA_MODE_Msk;
if (hri_sercomusart_get_CTRLA_reg(hw, SERCOM_USART_CTRLA_ENABLE)) {
hri_sercomusart_clear_CTRLA_ENABLE_bit(hw);
hri_sercomusart_wait_for_sync(hw, SERCOM_USART_SYNCBUSY_ENABLE);
}
hri_sercomusart_write_CTRLA_reg(hw, SERCOM_USART_CTRLA_SWRST | mode);
}
hri_sercomusart_wait_for_sync(hw, SERCOM_USART_SYNCBUSY_SWRST);
hri_sercomusart_write_CTRLA_reg(hw, _usarts[i].ctrl_a);
hri_sercomusart_write_CTRLB_reg(hw, _usarts[i].ctrl_b);
hri_sercomusart_write_CTRLC_reg(hw, _usarts[i].ctrl_c);
if ((_usarts[i].ctrl_a & SERCOM_USART_CTRLA_SAMPR(0x1)) || (_usarts[i].ctrl_a & SERCOM_USART_CTRLA_SAMPR(0x3))) {
((Sercom *)hw)->USART.BAUD.FRAC.BAUD = _usarts[i].baud;
((Sercom *)hw)->USART.BAUD.FRAC.FP = _usarts[i].fractional;
} else {
hri_sercomusart_write_BAUD_reg(hw, _usarts[i].baud);
}
hri_sercomusart_write_RXPL_reg(hw, _usarts[i].rxpl);
hri_sercomusart_write_DBGCTRL_reg(hw, _usarts[i].debug_ctrl);
return ERR_NONE;
}
/**
* \internal De-initialize SERCOM USART
*
* \param[in] hw The pointer to hardware instance
*/
static inline void _usart_deinit(void *const hw)
{
hri_sercomusart_clear_CTRLA_ENABLE_bit(hw);
hri_sercomusart_set_CTRLA_SWRST_bit(hw);
}
/**
* \internal Calculate baud rate register value
*
* \param[in] baud Required baud rate
* \param[in] clock_rate SERCOM clock frequency
* \param[in] samples The number of samples
* \param[in] mode USART mode
* \param[in] fraction A fraction value
*
* \return Calculated baud rate register value
*/
static uint16_t _usart_calculate_baud_rate(const uint32_t baud, const uint32_t clock_rate, const uint8_t samples,
const enum usart_baud_rate_mode mode, const uint8_t fraction)
{
if (USART_BAUDRATE_ASYNCH_ARITHMETIC == mode) {
return 65536 - ((uint64_t)65536 * samples * baud) / clock_rate;
}
if (USART_BAUDRATE_ASYNCH_FRACTIONAL == mode) {
return clock_rate / baud / samples + SERCOM_USART_BAUD_FRACFP_FP(fraction);
}
if (USART_BAUDRATE_SYNCH == mode) {
return clock_rate / baud / 2 - 1;
}
return 0;
}
/**
* \internal Set baud rate
*
* \param[in] device The pointer to USART device instance
* \param[in] baud_rate A baud rate to set
*/
static void _usart_set_baud_rate(void *const hw, const uint32_t baud_rate)
{
bool enabled = hri_sercomusart_get_CTRLA_ENABLE_bit(hw);
hri_sercomusart_clear_CTRLA_ENABLE_bit(hw);
CRITICAL_SECTION_ENTER()
hri_sercomusart_wait_for_sync(hw, SERCOM_USART_SYNCBUSY_ENABLE);
hri_sercomusart_write_BAUD_reg(hw, baud_rate);
CRITICAL_SECTION_LEAVE()
hri_sercomusart_write_CTRLA_ENABLE_bit(hw, enabled);
}
/**
* \internal Set data order
*
* \param[in] device The pointer to USART device instance
* \param[in] order A data order to set
*/
static void _usart_set_data_order(void *const hw, const enum usart_data_order order)
{
bool enabled = hri_sercomusart_get_CTRLA_ENABLE_bit(hw);
hri_sercomusart_clear_CTRLA_ENABLE_bit(hw);
CRITICAL_SECTION_ENTER()
hri_sercomusart_wait_for_sync(hw, SERCOM_USART_SYNCBUSY_ENABLE);
hri_sercomusart_write_CTRLA_DORD_bit(hw, order);
CRITICAL_SECTION_LEAVE()
hri_sercomusart_write_CTRLA_ENABLE_bit(hw, enabled);
}
/**
* \internal Set mode
*
* \param[in] device The pointer to USART device instance
* \param[in] mode A mode to set
*/
static void _usart_set_mode(void *const hw, const enum usart_mode mode)
{
bool enabled = hri_sercomusart_get_CTRLA_ENABLE_bit(hw);
hri_sercomusart_clear_CTRLA_ENABLE_bit(hw);
CRITICAL_SECTION_ENTER()
hri_sercomusart_wait_for_sync(hw, SERCOM_USART_SYNCBUSY_ENABLE);
hri_sercomusart_write_CTRLA_CMODE_bit(hw, mode);
CRITICAL_SECTION_LEAVE()
hri_sercomusart_write_CTRLA_ENABLE_bit(hw, enabled);
}
/**
* \internal Set parity
*
* \param[in] device The pointer to USART device instance
* \param[in] parity A parity to set
*/
static void _usart_set_parity(void *const hw, const enum usart_parity parity)
{
bool enabled = hri_sercomusart_get_CTRLA_ENABLE_bit(hw);
hri_sercomusart_clear_CTRLA_ENABLE_bit(hw);
CRITICAL_SECTION_ENTER()
hri_sercomusart_wait_for_sync(hw, SERCOM_USART_SYNCBUSY_ENABLE);
if (USART_PARITY_NONE != parity) {
hri_sercomusart_set_CTRLA_FORM_bf(hw, 1);
} else {
hri_sercomusart_clear_CTRLA_FORM_bf(hw, 1);
}
hri_sercomusart_write_CTRLB_PMODE_bit(hw, parity);
CRITICAL_SECTION_LEAVE()
hri_sercomusart_write_CTRLA_ENABLE_bit(hw, enabled);
}
/**
* \internal Set stop bits mode
*
* \param[in] device The pointer to USART device instance
* \param[in] stop_bits A stop bits mode to set
*/
static void _usart_set_stop_bits(void *const hw, const enum usart_stop_bits stop_bits)
{
bool enabled = hri_sercomusart_get_CTRLA_ENABLE_bit(hw);
hri_sercomusart_clear_CTRLA_ENABLE_bit(hw);
CRITICAL_SECTION_ENTER()
hri_sercomusart_wait_for_sync(hw, SERCOM_USART_SYNCBUSY_ENABLE);
hri_sercomusart_write_CTRLB_SBMODE_bit(hw, stop_bits);
CRITICAL_SECTION_LEAVE()
hri_sercomusart_write_CTRLA_ENABLE_bit(hw, enabled);
}
/**
* \internal Set character size
*
* \param[in] device The pointer to USART device instance
* \param[in] size A character size to set
*/
static void _usart_set_character_size(void *const hw, const enum usart_character_size size)
{
bool enabled = hri_sercomusart_get_CTRLA_ENABLE_bit(hw);
hri_sercomusart_clear_CTRLA_ENABLE_bit(hw);
CRITICAL_SECTION_ENTER()
hri_sercomusart_wait_for_sync(hw, SERCOM_USART_SYNCBUSY_ENABLE);
hri_sercomusart_write_CTRLB_CHSIZE_bf(hw, size);
CRITICAL_SECTION_LEAVE()
if (enabled) {
hri_sercomusart_set_CTRLA_ENABLE_bit(hw);
}
}
/* Sercom I2C implementation */
#ifndef CONF_SERCOM_0_I2CM_ENABLE
#define CONF_SERCOM_0_I2CM_ENABLE 0
#endif
#ifndef CONF_SERCOM_1_I2CM_ENABLE
#define CONF_SERCOM_1_I2CM_ENABLE 0
#endif
#ifndef CONF_SERCOM_2_I2CM_ENABLE
#define CONF_SERCOM_2_I2CM_ENABLE 0
#endif
#ifndef CONF_SERCOM_3_I2CM_ENABLE
#define CONF_SERCOM_3_I2CM_ENABLE 0
#endif
#ifndef CONF_SERCOM_4_I2CM_ENABLE
#define CONF_SERCOM_4_I2CM_ENABLE 0
#endif
#ifndef CONF_SERCOM_5_I2CM_ENABLE
#define CONF_SERCOM_5_I2CM_ENABLE 0
#endif
#ifndef CONF_SERCOM_6_I2CM_ENABLE
#define CONF_SERCOM_6_I2CM_ENABLE 0
#endif
#ifndef CONF_SERCOM_7_I2CM_ENABLE
#define CONF_SERCOM_7_I2CM_ENABLE 0
#endif
/** Amount of SERCOM that is used as I2C Master. */
#define SERCOM_I2CM_AMOUNT \
(CONF_SERCOM_0_I2CM_ENABLE + CONF_SERCOM_1_I2CM_ENABLE + CONF_SERCOM_2_I2CM_ENABLE + CONF_SERCOM_3_I2CM_ENABLE \
+ CONF_SERCOM_4_I2CM_ENABLE + CONF_SERCOM_5_I2CM_ENABLE + CONF_SERCOM_6_I2CM_ENABLE + CONF_SERCOM_7_I2CM_ENABLE)
/**
* \brief Macro is used to fill i2cm configuration structure based on
* its number
*
* \param[in] n The number of structures
*/
#define I2CM_CONFIGURATION(n) \
{ \
(n), \
(SERCOM_I2CM_CTRLA_MODE_I2C_MASTER) | (CONF_SERCOM_##n##_I2CM_RUNSTDBY << SERCOM_I2CM_CTRLA_RUNSTDBY_Pos) \
| (CONF_SERCOM_##n##_I2CM_SPEED << SERCOM_I2CM_CTRLA_SPEED_Pos) \
| (CONF_SERCOM_##n##_I2CM_MEXTTOEN << SERCOM_I2CM_CTRLA_MEXTTOEN_Pos) \
| (CONF_SERCOM_##n##_I2CM_SEXTTOEN << SERCOM_I2CM_CTRLA_SEXTTOEN_Pos) \
| (CONF_SERCOM_##n##_I2CM_INACTOUT << SERCOM_I2CM_CTRLA_INACTOUT_Pos) \
| (CONF_SERCOM_##n##_I2CM_LOWTOUT << SERCOM_I2CM_CTRLA_LOWTOUTEN_Pos) \
| (CONF_SERCOM_##n##_I2CM_SDAHOLD << SERCOM_I2CM_CTRLA_SDAHOLD_Pos), \
SERCOM_I2CM_CTRLB_SMEN, (uint32_t)(CONF_SERCOM_##n##_I2CM_BAUD_RATE), \
CONF_SERCOM_##n##_I2CM_DEBUG_STOP_MODE, CONF_SERCOM_##n##_I2CM_TRISE, CONF_GCLK_SERCOM##n##_CORE_FREQUENCY \
}
#define ERROR_FLAG (1 << 7)
#define SB_FLAG (1 << 1)
#define MB_FLAG (1 << 0)
#define CMD_STOP 0x3
#define I2C_IDLE 0x1
#define I2C_SM 0x0
#define I2C_FM 0x1
#define I2C_HS 0x2
#define TEN_ADDR_FRAME 0x78
#define TEN_ADDR_MASK 0x3ff
#define SEVEN_ADDR_MASK 0x7f
/**
* \brief SERCOM I2CM configuration type
*/
struct i2cm_configuration {
uint8_t number;
hri_sercomi2cm_ctrla_reg_t ctrl_a;
hri_sercomi2cm_ctrlb_reg_t ctrl_b;
hri_sercomi2cm_baud_reg_t baud;
hri_sercomi2cm_dbgctrl_reg_t dbgctrl;
uint16_t trise;
uint32_t clk; /* SERCOM peripheral clock frequency */
};
static inline int32_t _i2c_m_enable_implementation(void *hw);
static int32_t _i2c_m_sync_init_impl(struct _i2c_m_service *const service, void *const hw);
#if SERCOM_I2CM_AMOUNT < 1
/** Dummy array to pass compiling. */
static struct i2cm_configuration _i2cms[1] = {{0}};
#else
/**
* \brief Array of SERCOM I2CM configurations
*/
static struct i2cm_configuration _i2cms[] = {
#if CONF_SERCOM_0_I2CM_ENABLE == 1
I2CM_CONFIGURATION(0),
#endif
#if CONF_SERCOM_1_I2CM_ENABLE == 1
I2CM_CONFIGURATION(1),
#endif
#if CONF_SERCOM_2_I2CM_ENABLE == 1
I2CM_CONFIGURATION(2),
#endif
#if CONF_SERCOM_3_I2CM_ENABLE == 1
I2CM_CONFIGURATION(3),
#endif
#if CONF_SERCOM_4_I2CM_ENABLE == 1
I2CM_CONFIGURATION(4),
#endif
#if CONF_SERCOM_5_I2CM_ENABLE == 1
I2CM_CONFIGURATION(5),
#endif
#if CONF_SERCOM_6_I2CM_ENABLE == 1
I2CM_CONFIGURATION(6),
#endif
#if CONF_SERCOM_7_I2CM_ENABLE == 1
I2CM_CONFIGURATION(7),
#endif
};
#endif
/**
* \internal Retrieve ordinal number of the given sercom hardware instance
*
* \param[in] hw The pointer to hardware instance
* \return The ordinal number of the given sercom hardware instance
*/
static int8_t _get_i2cm_index(const void *const hw)
{
uint8_t sercom_offset = _sercom_get_hardware_index(hw);
uint8_t i;
for (i = 0; i < ARRAY_SIZE(_i2cms); i++) {
if (_i2cms[i].number == sercom_offset) {
return i;
}
}
ASSERT(false);
return -1;
}
static inline void _sercom_i2c_send_stop(void *const hw)
{
hri_sercomi2cm_set_CTRLB_CMD_bf(hw, CMD_STOP);
}
/**
* \brief SERCOM I2CM analyze hardware status and transfer next byte
*/
static inline int32_t _sercom_i2c_sync_analyse_flags(void *const hw, uint32_t flags, struct _i2c_m_msg *const msg)
{
int sclsm = hri_sercomi2cm_get_CTRLA_SCLSM_bit(hw);
uint16_t status = hri_sercomi2cm_read_STATUS_reg(hw);
if (flags & MB_FLAG) {
/* tx error */
if (status & SERCOM_I2CM_STATUS_ARBLOST) {
hri_sercomi2cm_clear_interrupt_MB_bit(hw);
msg->flags |= I2C_M_FAIL;
msg->flags &= ~I2C_M_BUSY;
if (status & SERCOM_I2CM_STATUS_BUSERR) {
return I2C_ERR_BUS;
}
return I2C_ERR_BAD_ADDRESS;
} else {
if (status & SERCOM_I2CM_STATUS_RXNACK) {
/* Slave rejects to receive more data */
if (msg->len > 0) {
msg->flags |= I2C_M_FAIL;
}
if (msg->flags & I2C_M_STOP) {
_sercom_i2c_send_stop(hw);
}
msg->flags &= ~I2C_M_BUSY;
return I2C_NACK;
}
if (msg->flags & I2C_M_TEN) {
hri_sercomi2cm_write_ADDR_reg(hw,
((((msg->addr & TEN_ADDR_MASK) >> 8) | TEN_ADDR_FRAME) << 1) | I2C_M_RD
| (hri_sercomi2cm_read_ADDR_reg(hw) & SERCOM_I2CM_ADDR_HS));
msg->flags &= ~I2C_M_TEN;
return I2C_OK;
}
if (msg->len == 0) {
if (msg->flags & I2C_M_STOP) {
_sercom_i2c_send_stop(hw);
}
msg->flags &= ~I2C_M_BUSY;
} else {
hri_sercomi2cm_write_DATA_reg(hw, *msg->buffer);
msg->buffer++;
msg->len--;
}
return I2C_OK;
}
} else if (flags & SB_FLAG) {
if ((msg->len) && !(status & SERCOM_I2CM_STATUS_RXNACK)) {
msg->len--;
/* last byte, send nack */
if ((msg->len == 0 && !sclsm) || (msg->len == 1 && sclsm)) {
hri_sercomi2cm_set_CTRLB_ACKACT_bit(hw);
}
if (msg->len == 0) {
if (msg->flags & I2C_M_STOP) {
hri_sercomi2cm_clear_CTRLB_SMEN_bit(hw);
_sercom_i2c_send_stop(hw);
}
msg->flags &= ~I2C_M_BUSY;
}
/* Accessing DATA.DATA auto-triggers I2C bus operations.
* The operation performed depends on the state of
* CTRLB.ACKACT, CTRLB.SMEN
**/
*msg->buffer++ = hri_sercomi2cm_read_DATA_reg(hw);
} else {
hri_sercomi2cm_clear_interrupt_SB_bit(hw);
return I2C_NACK;
}
hri_sercomi2cm_clear_interrupt_SB_bit(hw);
}
return I2C_OK;
}
/**
* \brief Enable the i2c master module
*
* \param[in] i2c_dev The pointer to i2c device
*/
int32_t _i2c_m_async_enable(struct _i2c_m_async_device *const i2c_dev)
{
ASSERT(i2c_dev);
return _i2c_m_enable_implementation(i2c_dev->hw);
}
/**
* \brief Disable the i2c master module
*
* \param[in] i2c_dev The pointer to i2c device
*/
int32_t _i2c_m_async_disable(struct _i2c_m_async_device *const i2c_dev)
{
void *hw = i2c_dev->hw;
ASSERT(i2c_dev);
ASSERT(i2c_dev->hw);
NVIC_DisableIRQ((IRQn_Type)_sercom_get_irq_num(hw));
hri_sercomi2cm_clear_CTRLA_ENABLE_bit(hw);
return ERR_NONE;
}
/**
* \brief Set baudrate of master
*
* \param[in] i2c_dev The pointer to i2c device
* \param[in] clkrate The clock rate of i2c master, in KHz
* \param[in] baudrate The baud rate desired for i2c master, in KHz
*/
int32_t _i2c_m_async_set_baudrate(struct _i2c_m_async_device *const i2c_dev, uint32_t clkrate, uint32_t baudrate)
{
uint32_t tmp;
void * hw = i2c_dev->hw;
if (hri_sercomi2cm_get_CTRLA_ENABLE_bit(hw)) {
return ERR_DENIED;
}
tmp = _get_i2cm_index(hw);
clkrate = _i2cms[tmp].clk / 1000;
if (i2c_dev->service.mode == I2C_STANDARD_MODE) {
tmp = (uint32_t)((clkrate - 10 * baudrate - baudrate * clkrate * (i2c_dev->service.trise * 0.000000001))
/ (2 * baudrate));
hri_sercomi2cm_write_BAUD_BAUD_bf(hw, tmp);
} else if (i2c_dev->service.mode == I2C_FASTMODE) {
tmp = (uint32_t)((clkrate - 10 * baudrate - baudrate * clkrate * (i2c_dev->service.trise * 0.000000001))
/ (2 * baudrate));
hri_sercomi2cm_write_BAUD_BAUD_bf(hw, tmp);
} else if (i2c_dev->service.mode == I2C_HIGHSPEED_MODE) {
tmp = (clkrate - 2 * baudrate) / (2 * baudrate);
hri_sercomi2cm_write_BAUD_HSBAUD_bf(hw, tmp);
} else {
/* error baudrate */
return ERR_INVALID_ARG;
}
return ERR_NONE;
}
/**
* \brief Retrieve IRQ number for the given hardware instance
*/
static uint8_t _sercom_get_irq_num(const void *const hw)
{
return SERCOM0_0_IRQn + (_sercom_get_hardware_index(hw) << 2);
}
/**
* \brief Initialize sercom i2c module to use in async mode
*
* \param[in] i2c_dev The pointer to i2c device
*/
int32_t _i2c_m_async_init(struct _i2c_m_async_device *const i2c_dev, void *const hw)
{
int32_t init_status;
ASSERT(i2c_dev);
i2c_dev->hw = hw;
init_status = _i2c_m_sync_init_impl(&i2c_dev->service, hw);
if (init_status) {
return init_status;
}
_sercom_init_irq_param(hw, (void *)i2c_dev);
uint8_t irq = _sercom_get_irq_num(hw);
for (uint32_t i = 0; i < 4; i++) {
NVIC_DisableIRQ((IRQn_Type)irq);
NVIC_ClearPendingIRQ((IRQn_Type)irq);
NVIC_EnableIRQ((IRQn_Type)irq);
irq++;
}
return ERR_NONE;
}
/**
* \brief Deinitialize sercom i2c module
*
* \param[in] i2c_dev The pointer to i2c device
*/
int32_t _i2c_m_async_deinit(struct _i2c_m_async_device *const i2c_dev)
{
ASSERT(i2c_dev);
hri_sercomi2cm_clear_CTRLA_ENABLE_bit(i2c_dev->hw);
hri_sercomi2cm_set_CTRLA_SWRST_bit(i2c_dev->hw);
return ERR_NONE;
}
/**
* \brief Transfer the slave address to bus, which will start the transfer
*
* \param[in] i2c_dev The pointer to i2c device
*/
static int32_t _sercom_i2c_send_address(struct _i2c_m_async_device *const i2c_dev)
{
void * hw = i2c_dev->hw;
struct _i2c_m_msg *msg = &i2c_dev->service.msg;
int sclsm = hri_sercomi2cm_get_CTRLA_SCLSM_bit(hw);
ASSERT(i2c_dev);
if (msg->len == 1 && sclsm) {
hri_sercomi2cm_set_CTRLB_ACKACT_bit(hw);
} else {
hri_sercomi2cm_clear_CTRLB_ACKACT_bit(hw);
}
/* ten bit address */
if (msg->addr & I2C_M_TEN) {
if (msg->flags & I2C_M_RD) {
msg->flags |= I2C_M_TEN;
}
hri_sercomi2cm_write_ADDR_reg(hw,
((msg->addr & TEN_ADDR_MASK) << 1) | SERCOM_I2CM_ADDR_TENBITEN
| (hri_sercomi2cm_read_ADDR_reg(hw) & SERCOM_I2CM_ADDR_HS));
} else {
hri_sercomi2cm_write_ADDR_reg(hw,
((msg->addr & SEVEN_ADDR_MASK) << 1) | (msg->flags & I2C_M_RD ? I2C_M_RD : 0x0)
| (hri_sercomi2cm_read_ADDR_reg(hw) & SERCOM_I2CM_ADDR_HS));
}
return ERR_NONE;
}
/**
* \brief Transfer data specified by msg
*
* \param[in] i2c_dev The pointer to i2c device
* \param[in] msg The pointer to i2c message
*
* \return Transfer status.
* \retval 0 Transfer success
* \retval <0 Transfer fail, return the error code
*/
int32_t _i2c_m_async_transfer(struct _i2c_m_async_device *i2c_dev, struct _i2c_m_msg *msg)
{
int ret;
ASSERT(i2c_dev);
ASSERT(i2c_dev->hw);
ASSERT(msg);
if (msg->len == 0) {
return ERR_NONE;
}
if (i2c_dev->service.msg.flags & I2C_M_BUSY) {
return ERR_BUSY;
}
msg->flags |= I2C_M_BUSY;
i2c_dev->service.msg = *msg;
hri_sercomi2cm_set_CTRLB_SMEN_bit(i2c_dev->hw);
ret = _sercom_i2c_send_address(i2c_dev);
if (ret) {
i2c_dev->service.msg.flags &= ~I2C_M_BUSY;
return ret;
}
return ERR_NONE;
}
/**
* \brief Set callback to be called in interrupt handler
*
* \param[in] i2c_dev The pointer to master i2c device
* \param[in] type The callback type
* \param[in] func The callback function pointer
*/
int32_t _i2c_m_async_register_callback(struct _i2c_m_async_device *const i2c_dev, enum _i2c_m_async_callback_type type,
FUNC_PTR func)
{
switch (type) {
case I2C_M_ASYNC_DEVICE_ERROR:
i2c_dev->cb.error = (_i2c_error_cb_t)func;
break;
case I2C_M_ASYNC_DEVICE_TX_COMPLETE:
i2c_dev->cb.tx_complete = (_i2c_complete_cb_t)func;
break;
case I2C_M_ASYNC_DEVICE_RX_COMPLETE:
i2c_dev->cb.rx_complete = (_i2c_complete_cb_t)func;
break;
default:
/* error */
break;
}
return ERR_NONE;
}
/**
* \brief Set stop condition on I2C
*
* \param i2c_dev Pointer to master i2c device
*
* \return Operation status
* \retval I2C_OK Operation was successfull
*/
int32_t _i2c_m_async_send_stop(struct _i2c_m_async_device *const i2c_dev)
{
void *hw = i2c_dev->hw;
_sercom_i2c_send_stop(hw);
return I2C_OK;
}
/**
* \brief Get number of bytes left in transfer buffer
*
* \param i2c_dev Pointer to i2c master device
*
* \return Bytes left in buffer
* \retval =>0 Bytes left in buffer
*/
int32_t _i2c_m_async_get_bytes_left(struct _i2c_m_async_device *const i2c_dev)
{
if (i2c_dev->service.msg.flags & I2C_M_BUSY) {
return i2c_dev->service.msg.len;
}
return 0;
}
/**
* \brief Initialize sercom i2c module to use in sync mode
*
* \param[in] i2c_dev The pointer to i2c device
*/
int32_t _i2c_m_sync_init(struct _i2c_m_sync_device *const i2c_dev, void *const hw)
{
ASSERT(i2c_dev);
i2c_dev->hw = hw;
return _i2c_m_sync_init_impl(&i2c_dev->service, hw);
}
/**
* \brief Deinitialize sercom i2c module
*
* \param[in] i2c_dev The pointer to i2c device
*/
int32_t _i2c_m_sync_deinit(struct _i2c_m_sync_device *const i2c_dev)
{
ASSERT(i2c_dev);
hri_sercomi2cm_clear_CTRLA_ENABLE_bit(i2c_dev->hw);
hri_sercomi2cm_set_CTRLA_SWRST_bit(i2c_dev->hw);
return ERR_NONE;
}
/**
* \brief Enable the i2c master module
*
* \param[in] i2c_dev The pointer to i2c device
*/
int32_t _i2c_m_sync_enable(struct _i2c_m_sync_device *const i2c_dev)
{
ASSERT(i2c_dev);
return _i2c_m_enable_implementation(i2c_dev->hw);
}
/**
* \brief Disable the i2c master module
*
* \param[in] i2c_dev The pointer to i2c device
*/
int32_t _i2c_m_sync_disable(struct _i2c_m_sync_device *const i2c_dev)
{
void *hw = i2c_dev->hw;
ASSERT(i2c_dev);
ASSERT(i2c_dev->hw);
hri_sercomi2cm_clear_CTRLA_ENABLE_bit(hw);
return ERR_NONE;
}
/**
* \brief Set baudrate of master
*
* \param[in] i2c_dev The pointer to i2c device
* \param[in] clkrate The clock rate of i2c master, in KHz
* \param[in] baudrate The baud rate desired for i2c master, in KHz
*/
int32_t _i2c_m_sync_set_baudrate(struct _i2c_m_sync_device *const i2c_dev, uint32_t clkrate, uint32_t baudrate)
{
uint32_t tmp;
void * hw = i2c_dev->hw;
if (hri_sercomi2cm_get_CTRLA_ENABLE_bit(hw)) {
return ERR_DENIED;
}
tmp = _get_i2cm_index(hw);
clkrate = _i2cms[tmp].clk / 1000;
if (i2c_dev->service.mode == I2C_STANDARD_MODE) {
tmp = (uint32_t)((clkrate - 10 * baudrate - baudrate * clkrate * (i2c_dev->service.trise * 0.000000001))
/ (2 * baudrate));
hri_sercomi2cm_write_BAUD_BAUD_bf(hw, tmp);
} else if (i2c_dev->service.mode == I2C_FASTMODE) {
tmp = (uint32_t)((clkrate - 10 * baudrate - baudrate * clkrate * (i2c_dev->service.trise * 0.000000001))
/ (2 * baudrate));
hri_sercomi2cm_write_BAUD_BAUD_bf(hw, tmp);
} else if (i2c_dev->service.mode == I2C_HIGHSPEED_MODE) {
tmp = (clkrate - 2 * baudrate) / (2 * baudrate);
hri_sercomi2cm_write_BAUD_HSBAUD_bf(hw, tmp);
} else {
/* error baudrate */
return ERR_INVALID_ARG;
}
return ERR_NONE;
}
/**
* \brief Enable/disable I2C master interrupt
*/
void _i2c_m_async_set_irq_state(struct _i2c_m_async_device *const device, const enum _i2c_m_async_callback_type type,
const bool state)
{
if (I2C_M_ASYNC_DEVICE_TX_COMPLETE == type || I2C_M_ASYNC_DEVICE_RX_COMPLETE == type) {
hri_sercomi2cm_write_INTEN_SB_bit(device->hw, state);
hri_sercomi2cm_write_INTEN_MB_bit(device->hw, state);
} else if (I2C_M_ASYNC_DEVICE_ERROR == type) {
hri_sercomi2cm_write_INTEN_ERROR_bit(device->hw, state);
}
}
/**
* \brief Wait for bus response
*
* \param[in] i2c_dev The pointer to i2c device
* \param[in] flags Store the hardware response
*
* \return Bus response status.
* \retval 0 Bus response status OK
* \retval <0 Bus response fail
*/
inline static int32_t _sercom_i2c_sync_wait_bus(struct _i2c_m_sync_device *const i2c_dev, uint32_t *flags)
{
uint32_t timeout = 65535;
void * hw = i2c_dev->hw;
do {
*flags = hri_sercomi2cm_read_INTFLAG_reg(hw);
if (timeout-- == 0) {
return I2C_ERR_BUS;
}
} while (!(*flags & MB_FLAG) && !(*flags & SB_FLAG));
return I2C_OK;
}
/**
* \brief Send the slave address to bus, which will start the transfer
*
* \param[in] i2c_dev The pointer to i2c device
*/
static int32_t _sercom_i2c_sync_send_address(struct _i2c_m_sync_device *const i2c_dev)
{
void * hw = i2c_dev->hw;
struct _i2c_m_msg *msg = &i2c_dev->service.msg;
int sclsm = hri_sercomi2cm_get_CTRLA_SCLSM_bit(hw);
uint32_t flags;
ASSERT(i2c_dev);
if (msg->len == 1 && sclsm) {
hri_sercomi2cm_set_CTRLB_ACKACT_bit(hw);
} else {
hri_sercomi2cm_clear_CTRLB_ACKACT_bit(hw);
}
/* ten bit address */
if (msg->addr & I2C_M_TEN) {
if (msg->flags & I2C_M_RD) {
msg->flags |= I2C_M_TEN;
}
hri_sercomi2cm_write_ADDR_reg(hw,
((msg->addr & TEN_ADDR_MASK) << 1) | SERCOM_I2CM_ADDR_TENBITEN
| (hri_sercomi2cm_read_ADDR_reg(hw) & SERCOM_I2CM_ADDR_HS));
} else {
hri_sercomi2cm_write_ADDR_reg(hw,
((msg->addr & SEVEN_ADDR_MASK) << 1) | (msg->flags & I2C_M_RD ? I2C_M_RD : 0x0)
| (hri_sercomi2cm_read_ADDR_reg(hw) & SERCOM_I2CM_ADDR_HS));
}
_sercom_i2c_sync_wait_bus(i2c_dev, &flags);
return _sercom_i2c_sync_analyse_flags(hw, flags, msg);
}
/**
* \brief Transfer data specified by msg
*
* \param[in] i2c_dev The pointer to i2c device
* \param[in] msg The pointer to i2c message
*
* \return Transfer status.
* \retval 0 Transfer success
* \retval <0 Transfer fail or partial fail, return the error code
*/
int32_t _i2c_m_sync_transfer(struct _i2c_m_sync_device *const i2c_dev, struct _i2c_m_msg *msg)
{
uint32_t flags;
int ret;
void * hw = i2c_dev->hw;
ASSERT(i2c_dev);
ASSERT(i2c_dev->hw);
ASSERT(msg);
if (i2c_dev->service.msg.flags & I2C_M_BUSY) {
return I2C_ERR_BUSY;
}
msg->flags |= I2C_M_BUSY;
i2c_dev->service.msg = *msg;
hri_sercomi2cm_set_CTRLB_SMEN_bit(hw);
ret = _sercom_i2c_sync_send_address(i2c_dev);
if (ret) {
i2c_dev->service.msg.flags &= ~I2C_M_BUSY;
return ret;
}
while (i2c_dev->service.msg.flags & I2C_M_BUSY) {
ret = _sercom_i2c_sync_wait_bus(i2c_dev, &flags);
if (ret) {
if (msg->flags & I2C_M_STOP) {
_sercom_i2c_send_stop(hw);
}
i2c_dev->service.msg.flags &= ~I2C_M_BUSY;
return ret;
}
ret = _sercom_i2c_sync_analyse_flags(hw, flags, &i2c_dev->service.msg);
}
return ret;
}
int32_t _i2c_m_sync_send_stop(struct _i2c_m_sync_device *const i2c_dev)
{
void *hw = i2c_dev->hw;
_sercom_i2c_send_stop(hw);
return I2C_OK;
}
static inline int32_t _i2c_m_enable_implementation(void *const hw)
{
int timeout = 65535;
int timeout_attempt = 4;
ASSERT(hw);
/* Enable interrupts */
hri_sercomi2cm_set_CTRLA_ENABLE_bit(hw);
while (hri_sercomi2cm_read_STATUS_BUSSTATE_bf(hw) != I2C_IDLE) {
timeout--;
if (timeout <= 0) {
if (--timeout_attempt)
timeout = 65535;
else
return I2C_ERR_BUSY;
hri_sercomi2cm_clear_STATUS_reg(hw, SERCOM_I2CM_STATUS_BUSSTATE(I2C_IDLE));
}
}
return ERR_NONE;
}
static int32_t _i2c_m_sync_init_impl(struct _i2c_m_service *const service, void *const hw)
{
uint8_t i = _get_i2cm_index(hw);
if (!hri_sercomi2cm_is_syncing(hw, SERCOM_I2CM_SYNCBUSY_SWRST)) {
uint32_t mode = _i2cms[i].ctrl_a & SERCOM_I2CM_CTRLA_MODE_Msk;
if (hri_sercomi2cm_get_CTRLA_reg(hw, SERCOM_I2CM_CTRLA_ENABLE)) {
hri_sercomi2cm_clear_CTRLA_ENABLE_bit(hw);
hri_sercomi2cm_wait_for_sync(hw, SERCOM_I2CM_SYNCBUSY_ENABLE);
}
hri_sercomi2cm_write_CTRLA_reg(hw, SERCOM_I2CM_CTRLA_SWRST | mode);
}
hri_sercomi2cm_wait_for_sync(hw, SERCOM_I2CM_SYNCBUSY_SWRST);
hri_sercomi2cm_write_CTRLA_reg(hw, _i2cms[i].ctrl_a);
hri_sercomi2cm_write_CTRLB_reg(hw, _i2cms[i].ctrl_b);
hri_sercomi2cm_write_BAUD_reg(hw, _i2cms[i].baud);
service->mode = (_i2cms[i].ctrl_a & SERCOM_I2CM_CTRLA_SPEED_Msk) >> SERCOM_I2CM_CTRLA_SPEED_Pos;
hri_sercomi2cm_write_ADDR_HS_bit(hw, service->mode < I2C_HS ? 0 : 1);
service->trise = _i2cms[i].trise;
return ERR_NONE;
}
/* SERCOM I2C slave */
#ifndef CONF_SERCOM_0_I2CS_ENABLE
#define CONF_SERCOM_0_I2CS_ENABLE 0
#endif
#ifndef CONF_SERCOM_1_I2CS_ENABLE
#define CONF_SERCOM_1_I2CS_ENABLE 0
#endif
#ifndef CONF_SERCOM_2_I2CS_ENABLE
#define CONF_SERCOM_2_I2CS_ENABLE 0
#endif
#ifndef CONF_SERCOM_3_I2CS_ENABLE
#define CONF_SERCOM_3_I2CS_ENABLE 0
#endif
#ifndef CONF_SERCOM_4_I2CS_ENABLE
#define CONF_SERCOM_4_I2CS_ENABLE 0
#endif
#ifndef CONF_SERCOM_5_I2CS_ENABLE
#define CONF_SERCOM_5_I2CS_ENABLE 0
#endif
#ifndef CONF_SERCOM_6_I2CS_ENABLE
#define CONF_SERCOM_6_I2CS_ENABLE 0
#endif
#ifndef CONF_SERCOM_7_I2CS_ENABLE
#define CONF_SERCOM_7_I2CS_ENABLE 0
#endif
/** Amount of SERCOM that is used as I2C Slave. */
#define SERCOM_I2CS_AMOUNT \
(CONF_SERCOM_0_I2CS_ENABLE + CONF_SERCOM_1_I2CS_ENABLE + CONF_SERCOM_2_I2CS_ENABLE + CONF_SERCOM_3_I2CS_ENABLE \
+ CONF_SERCOM_4_I2CS_ENABLE + CONF_SERCOM_5_I2CS_ENABLE + CONF_SERCOM_6_I2CS_ENABLE + CONF_SERCOM_7_I2CS_ENABLE)
/**
* \brief Macro is used to fill I2C slave configuration structure based on
* its number
*
* \param[in] n The number of structures
*/
#define I2CS_CONFIGURATION(n) \
{ \
n, \
SERCOM_I2CM_CTRLA_MODE_I2C_SLAVE | (CONF_SERCOM_##n##_I2CS_RUNSTDBY << SERCOM_I2CS_CTRLA_RUNSTDBY_Pos) \
| SERCOM_I2CS_CTRLA_SDAHOLD(CONF_SERCOM_##n##_I2CS_SDAHOLD) \
| (CONF_SERCOM_##n##_I2CS_SEXTTOEN << SERCOM_I2CS_CTRLA_SEXTTOEN_Pos) \
| (CONF_SERCOM_##n##_I2CS_SPEED << SERCOM_I2CS_CTRLA_SPEED_Pos) \
| (CONF_SERCOM_##n##_I2CS_SCLSM << SERCOM_I2CS_CTRLA_SCLSM_Pos) \
| (CONF_SERCOM_##n##_I2CS_LOWTOUT << SERCOM_I2CS_CTRLA_LOWTOUTEN_Pos), \
SERCOM_I2CS_CTRLB_SMEN | SERCOM_I2CS_CTRLB_AACKEN | SERCOM_I2CS_CTRLB_AMODE(CONF_SERCOM_##n##_I2CS_AMODE), \
(CONF_SERCOM_##n##_I2CS_GENCEN << SERCOM_I2CS_ADDR_GENCEN_Pos) \
| SERCOM_I2CS_ADDR_ADDR(CONF_SERCOM_##n##_I2CS_ADDRESS) \
| (CONF_SERCOM_##n##_I2CS_TENBITEN << SERCOM_I2CS_ADDR_TENBITEN_Pos) \
| SERCOM_I2CS_ADDR_ADDRMASK(CONF_SERCOM_##n##_I2CS_ADDRESS_MASK) \
}
/**
* \brief Macro to check 10-bit addressing
*/
#define I2CS_7BIT_ADDRESSING_MASK 0x7F
static int32_t _i2c_s_init(void *const hw);
static int8_t _get_i2c_s_index(const void *const hw);
static inline void _i2c_s_deinit(void *const hw);
static int32_t _i2c_s_set_address(void *const hw, const uint16_t address);
/**
* \brief SERCOM I2C slave configuration type
*/
struct i2cs_configuration {
uint8_t number;
hri_sercomi2cs_ctrla_reg_t ctrl_a;
hri_sercomi2cs_ctrlb_reg_t ctrl_b;
hri_sercomi2cs_addr_reg_t address;
};
#if SERCOM_I2CS_AMOUNT < 1
/** Dummy array for compiling. */
static struct i2cs_configuration _i2css[1] = {{0}};
#else
/**
* \brief Array of SERCOM I2C slave configurations
*/
static struct i2cs_configuration _i2css[] = {
#if CONF_SERCOM_0_I2CS_ENABLE == 1
I2CS_CONFIGURATION(0),
#endif
#if CONF_SERCOM_1_I2CS_ENABLE == 1
I2CS_CONFIGURATION(1),
#endif
#if CONF_SERCOM_2_I2CS_ENABLE == 1
I2CS_CONFIGURATION(2),
#endif
#if CONF_SERCOM_3_I2CS_ENABLE == 1
I2CS_CONFIGURATION(3),
#endif
#if CONF_SERCOM_4_I2CS_ENABLE == 1
I2CS_CONFIGURATION(4),
#endif
#if CONF_SERCOM_5_I2CS_ENABLE == 1
I2CS_CONFIGURATION(5),
#endif
#if CONF_SERCOM_6_I2CS_ENABLE == 1
I2CS_CONFIGURATION(6),
#endif
#if CONF_SERCOM_7_I2CS_ENABLE == 1
I2CS_CONFIGURATION(7),
#endif
};
#endif
/**
* \brief Initialize synchronous I2C slave
*/
int32_t _i2c_s_sync_init(struct _i2c_s_sync_device *const device, void *const hw)
{
int32_t status;
ASSERT(device);
status = _i2c_s_init(hw);
if (status) {
return status;
}
device->hw = hw;
return ERR_NONE;
}
/**
* \brief Initialize asynchronous I2C slave
*/
int32_t _i2c_s_async_init(struct _i2c_s_async_device *const device, void *const hw)
{
int32_t init_status;
ASSERT(device);
init_status = _i2c_s_init(hw);
if (init_status) {
return init_status;
}
device->hw = hw;
_sercom_init_irq_param(hw, (void *)device);
uint8_t irq = _sercom_get_irq_num(hw);
for (uint32_t i = 0; i < 4; i++) {
NVIC_DisableIRQ((IRQn_Type)irq);
NVIC_ClearPendingIRQ((IRQn_Type)irq);
NVIC_EnableIRQ((IRQn_Type)irq);
irq++;
}
// Enable Address Match and PREC interrupt by default.
hri_sercomi2cs_set_INTEN_AMATCH_bit(hw);
hri_sercomi2cs_set_INTEN_PREC_bit(hw);
return ERR_NONE;
}
/**
* \brief Deinitialize synchronous I2C
*/
int32_t _i2c_s_sync_deinit(struct _i2c_s_sync_device *const device)
{
_i2c_s_deinit(device->hw);
return ERR_NONE;
}
/**
* \brief Deinitialize asynchronous I2C
*/
int32_t _i2c_s_async_deinit(struct _i2c_s_async_device *const device)
{
NVIC_DisableIRQ((IRQn_Type)_sercom_get_irq_num(device->hw));
_i2c_s_deinit(device->hw);
return ERR_NONE;
}
/**
* \brief Enable I2C module
*/
int32_t _i2c_s_sync_enable(struct _i2c_s_sync_device *const device)
{
hri_sercomi2cs_set_CTRLA_ENABLE_bit(device->hw);
return ERR_NONE;
}
/**
* \brief Enable I2C module
*/
int32_t _i2c_s_async_enable(struct _i2c_s_async_device *const device)
{
hri_sercomi2cs_set_CTRLA_ENABLE_bit(device->hw);
return ERR_NONE;
}
/**
* \brief Disable I2C module
*/
int32_t _i2c_s_sync_disable(struct _i2c_s_sync_device *const device)
{
hri_sercomi2cs_clear_CTRLA_ENABLE_bit(device->hw);
return ERR_NONE;
}
/**
* \brief Disable I2C module
*/
int32_t _i2c_s_async_disable(struct _i2c_s_async_device *const device)
{
hri_sercomi2cs_clear_CTRLA_ENABLE_bit(device->hw);
return ERR_NONE;
}
/**
* \brief Check if 10-bit addressing mode is on
*/
int32_t _i2c_s_sync_is_10bit_addressing_on(const struct _i2c_s_sync_device *const device)
{
return hri_sercomi2cs_get_ADDR_TENBITEN_bit(device->hw);
}
/**
* \brief Check if 10-bit addressing mode is on
*/
int32_t _i2c_s_async_is_10bit_addressing_on(const struct _i2c_s_async_device *const device)
{
return hri_sercomi2cs_get_ADDR_TENBITEN_bit(device->hw);
}
/**
* \brief Set I2C slave address
*/
int32_t _i2c_s_sync_set_address(struct _i2c_s_sync_device *const device, const uint16_t address)
{
return _i2c_s_set_address(device->hw, address);
}
/**
* \brief Set I2C slave address
*/
int32_t _i2c_s_async_set_address(struct _i2c_s_async_device *const device, const uint16_t address)
{
return _i2c_s_set_address(device->hw, address);
}
/**
* \brief Write a byte to the given I2C instance
*/
void _i2c_s_sync_write_byte(struct _i2c_s_sync_device *const device, const uint8_t data)
{
hri_sercomi2cs_write_DATA_reg(device->hw, data);
}
/**
* \brief Write a byte to the given I2C instance
*/
void _i2c_s_async_write_byte(struct _i2c_s_async_device *const device, const uint8_t data)
{
hri_sercomi2cs_write_DATA_reg(device->hw, data);
}
/**
* \brief Read a byte from the given I2C instance
*/
uint8_t _i2c_s_sync_read_byte(const struct _i2c_s_sync_device *const device)
{
return hri_sercomi2cs_read_DATA_reg(device->hw);
}
/**
* \brief Check if I2C is ready to send next byt
*/
bool _i2c_s_sync_is_byte_sent(const struct _i2c_s_sync_device *const device)
{
return hri_sercomi2cs_get_interrupt_DRDY_bit(device->hw);
}
/**
* \brief Check if there is data received by I2C
*/
bool _i2c_s_sync_is_byte_received(const struct _i2c_s_sync_device *const device)
{
return hri_sercomi2cs_get_interrupt_DRDY_bit(device->hw);
}
/**
* \brief Retrieve I2C slave status
*/
i2c_s_status_t _i2c_s_sync_get_status(const struct _i2c_s_sync_device *const device)
{
return hri_sercomi2cs_read_STATUS_reg(device->hw);
}
/**
* \brief Clear the Data Ready interrupt flag
*/
int32_t _i2c_s_sync_clear_data_ready_flag(const struct _i2c_s_sync_device *const device)
{
hri_sercomi2cs_clear_INTFLAG_DRDY_bit(device->hw);
return ERR_NONE;
}
/**
* \brief Retrieve I2C slave status
*/
i2c_s_status_t _i2c_s_async_get_status(const struct _i2c_s_async_device *const device)
{
return hri_sercomi2cs_read_STATUS_reg(device->hw);
}
/**
* \brief Abort data transmission
*/
int32_t _i2c_s_async_abort_transmission(const struct _i2c_s_async_device *const device)
{
hri_sercomi2cs_clear_INTEN_DRDY_bit(device->hw);
return ERR_NONE;
}
/**
* \brief Enable/disable I2C slave interrupt
*/
int32_t _i2c_s_async_set_irq_state(struct _i2c_s_async_device *const device, const enum _i2c_s_async_callback_type type,
const bool state)
{
ASSERT(device);
if (I2C_S_DEVICE_TX == type || I2C_S_DEVICE_RX_COMPLETE == type) {
hri_sercomi2cs_write_INTEN_DRDY_bit(device->hw, state);
} else if (I2C_S_DEVICE_ERROR == type) {
hri_sercomi2cs_write_INTEN_ERROR_bit(device->hw, state);
}
return ERR_NONE;
}
/**
* \internal Initalize i2c slave hardware
*
* \param[in] p The pointer to hardware instance
*
*\ return status of initialization
*/
static int32_t _i2c_s_init(void *const hw)
{
int8_t i = _get_i2c_s_index(hw);
if (i == -1) {
return ERR_INVALID_ARG;
}
if (!hri_sercomi2cs_is_syncing(hw, SERCOM_I2CS_CTRLA_SWRST)) {
uint32_t mode = _i2css[i].ctrl_a & SERCOM_I2CS_CTRLA_MODE_Msk;
if (hri_sercomi2cs_get_CTRLA_reg(hw, SERCOM_I2CS_CTRLA_ENABLE)) {
hri_sercomi2cs_clear_CTRLA_ENABLE_bit(hw);
hri_sercomi2cs_wait_for_sync(hw, SERCOM_I2CS_SYNCBUSY_ENABLE);
}
hri_sercomi2cs_write_CTRLA_reg(hw, SERCOM_I2CS_CTRLA_SWRST | mode);
}
hri_sercomi2cs_wait_for_sync(hw, SERCOM_I2CS_SYNCBUSY_SWRST);
hri_sercomi2cs_write_CTRLA_reg(hw, _i2css[i].ctrl_a);
hri_sercomi2cs_write_CTRLB_reg(hw, _i2css[i].ctrl_b);
hri_sercomi2cs_write_ADDR_reg(hw, _i2css[i].address);
return ERR_NONE;
}
/**
* \internal Retrieve ordinal number of the given sercom hardware instance
*
* \param[in] hw The pointer to hardware instance
*
* \return The ordinal number of the given sercom hardware instance
*/
static int8_t _get_i2c_s_index(const void *const hw)
{
uint8_t sercom_offset = _sercom_get_hardware_index(hw);
uint8_t i;
for (i = 0; i < ARRAY_SIZE(_i2css); i++) {
if (_i2css[i].number == sercom_offset) {
return i;
}
}
ASSERT(false);
return -1;
}
/**
* \internal De-initialize i2c slave
*
* \param[in] hw The pointer to hardware instance
*/
static inline void _i2c_s_deinit(void *const hw)
{
hri_sercomi2cs_clear_CTRLA_ENABLE_bit(hw);
hri_sercomi2cs_set_CTRLA_SWRST_bit(hw);
}
/**
* \internal De-initialize i2c slave
*
* \param[in] hw The pointer to hardware instance
* \param[in] address Address to set
*/
static int32_t _i2c_s_set_address(void *const hw, const uint16_t address)
{
bool enabled;
enabled = hri_sercomi2cs_get_CTRLA_ENABLE_bit(hw);
CRITICAL_SECTION_ENTER()
hri_sercomi2cs_clear_CTRLA_ENABLE_bit(hw);
hri_sercomi2cs_write_ADDR_ADDR_bf(hw, address);
CRITICAL_SECTION_LEAVE()
if (enabled) {
hri_sercomi2cs_set_CTRLA_ENABLE_bit(hw);
}
return ERR_NONE;
}
/* Sercom SPI implementation */
#ifndef SERCOM_USART_CTRLA_MODE_SPI_SLAVE
#define SERCOM_USART_CTRLA_MODE_SPI_SLAVE (2 << 2)
#endif
#define SPI_DEV_IRQ_MODE 0x8000
#define _SPI_CS_PORT_EXTRACT(cs) (((cs) >> 0) & 0xFF)
#define _SPI_CS_PIN_EXTRACT(cs) (((cs) >> 8) & 0xFF)
COMPILER_PACK_SET(1)
/** Initialization configuration of registers. */
struct sercomspi_regs_cfg {
uint32_t ctrla;
uint32_t ctrlb;
uint32_t addr;
uint8_t baud;
uint8_t dbgctrl;
uint16_t dummy_byte;
uint8_t n;
};
COMPILER_PACK_RESET()
/** Build configuration from header macros. */
#define SERCOMSPI_REGS(n) \
{ \
(((CONF_SERCOM_##n##_SPI_DORD) << SERCOM_SPI_CTRLA_DORD_Pos) \
| (CONF_SERCOM_##n##_SPI_CPOL << SERCOM_SPI_CTRLA_CPOL_Pos) \
| (CONF_SERCOM_##n##_SPI_CPHA << SERCOM_SPI_CTRLA_CPHA_Pos) \
| (CONF_SERCOM_##n##_SPI_AMODE_EN ? SERCOM_SPI_CTRLA_FORM(2) : SERCOM_SPI_CTRLA_FORM(0)) \
| SERCOM_SPI_CTRLA_DOPO(CONF_SERCOM_##n##_SPI_TXPO) | SERCOM_SPI_CTRLA_DIPO(CONF_SERCOM_##n##_SPI_RXPO) \
| (CONF_SERCOM_##n##_SPI_IBON << SERCOM_SPI_CTRLA_IBON_Pos) \
| (CONF_SERCOM_##n##_SPI_RUNSTDBY << SERCOM_SPI_CTRLA_RUNSTDBY_Pos) \
| SERCOM_SPI_CTRLA_MODE(CONF_SERCOM_##n##_SPI_MODE)), /* ctrla */ \
((CONF_SERCOM_##n##_SPI_RXEN << SERCOM_SPI_CTRLB_RXEN_Pos) \
| (CONF_SERCOM_##n##_SPI_MSSEN << SERCOM_SPI_CTRLB_MSSEN_Pos) \
| (CONF_SERCOM_##n##_SPI_SSDE << SERCOM_SPI_CTRLB_SSDE_Pos) \
| (CONF_SERCOM_##n##_SPI_PLOADEN << SERCOM_SPI_CTRLB_PLOADEN_Pos) \
| SERCOM_SPI_CTRLB_AMODE(CONF_SERCOM_##n##_SPI_AMODE) \
| SERCOM_SPI_CTRLB_CHSIZE(CONF_SERCOM_##n##_SPI_CHSIZE)), /* ctrlb */ \
(SERCOM_SPI_ADDR_ADDR(CONF_SERCOM_##n##_SPI_ADDR) \
| SERCOM_SPI_ADDR_ADDRMASK(CONF_SERCOM_##n##_SPI_ADDRMASK)), /* addr */ \
((uint8_t)CONF_SERCOM_##n##_SPI_BAUD_RATE), /* baud */ \
(CONF_SERCOM_##n##_SPI_DBGSTOP << SERCOM_SPI_DBGCTRL_DBGSTOP_Pos), /* dbgctrl */ \
CONF_SERCOM_##n##_SPI_DUMMYBYTE, /* Dummy byte for SPI master mode */ \
n /* sercom number */ \
}
#ifndef CONF_SERCOM_0_SPI_ENABLE
#define CONF_SERCOM_0_SPI_ENABLE 0
#endif
#ifndef CONF_SERCOM_1_SPI_ENABLE
#define CONF_SERCOM_1_SPI_ENABLE 0
#endif
#ifndef CONF_SERCOM_2_SPI_ENABLE
#define CONF_SERCOM_2_SPI_ENABLE 0
#endif
#ifndef CONF_SERCOM_3_SPI_ENABLE
#define CONF_SERCOM_3_SPI_ENABLE 0
#endif
#ifndef CONF_SERCOM_4_SPI_ENABLE
#define CONF_SERCOM_4_SPI_ENABLE 0
#endif
#ifndef CONF_SERCOM_5_SPI_ENABLE
#define CONF_SERCOM_5_SPI_ENABLE 0
#endif
#ifndef CONF_SERCOM_6_SPI_ENABLE
#define CONF_SERCOM_6_SPI_ENABLE 0
#endif
#ifndef CONF_SERCOM_7_SPI_ENABLE
#define CONF_SERCOM_7_SPI_ENABLE 0
#endif
/** Amount of SERCOM that is used as SPI */
#define SERCOM_SPI_AMOUNT \
(CONF_SERCOM_0_SPI_ENABLE + CONF_SERCOM_1_SPI_ENABLE + CONF_SERCOM_2_SPI_ENABLE + CONF_SERCOM_3_SPI_ENABLE \
+ CONF_SERCOM_4_SPI_ENABLE + CONF_SERCOM_5_SPI_ENABLE + CONF_SERCOM_6_SPI_ENABLE + CONF_SERCOM_7_SPI_ENABLE)
#if SERCOM_SPI_AMOUNT < 1
/** Dummy array for compiling. */
static const struct sercomspi_regs_cfg sercomspi_regs[1] = {{0}};
#else
/** The SERCOM SPI configurations of SERCOM that is used as SPI. */
static const struct sercomspi_regs_cfg sercomspi_regs[] = {
#if CONF_SERCOM_0_SPI_ENABLE
SERCOMSPI_REGS(0),
#endif
#if CONF_SERCOM_1_SPI_ENABLE
SERCOMSPI_REGS(1),
#endif
#if CONF_SERCOM_2_SPI_ENABLE
SERCOMSPI_REGS(2),
#endif
#if CONF_SERCOM_3_SPI_ENABLE
SERCOMSPI_REGS(3),
#endif
#if CONF_SERCOM_4_SPI_ENABLE
SERCOMSPI_REGS(4),
#endif
#if CONF_SERCOM_5_SPI_ENABLE
SERCOMSPI_REGS(5),
#endif
#if CONF_SERCOM_6_SPI_ENABLE
SERCOMSPI_REGS(6),
#endif
#if CONF_SERCOM_7_SPI_ENABLE
SERCOMSPI_REGS(7),
#endif
};
#endif
/** \internal De-initialize SERCOM SPI
*
* \param[in] hw Pointer to the hardware register base.
*
* \return De-initialization status
*/
static int32_t _spi_deinit(void *const hw)
{
hri_sercomspi_clear_CTRLA_ENABLE_bit(hw);
hri_sercomspi_set_CTRLA_SWRST_bit(hw);
return ERR_NONE;
}
/** \internal Enable SERCOM SPI
*
* \param[in] hw Pointer to the hardware register base.
*
* \return Enabling status
*/
static int32_t _spi_sync_enable(void *const hw)
{
if (hri_sercomspi_is_syncing(hw, SERCOM_SPI_SYNCBUSY_SWRST)) {
return ERR_BUSY;
}
hri_sercomspi_set_CTRLA_ENABLE_bit(hw);
return ERR_NONE;
}
/** \internal Enable SERCOM SPI
*
* \param[in] hw Pointer to the hardware register base.
*
* \return Enabling status
*/
static int32_t _spi_async_enable(void *const hw)
{
_spi_sync_enable(hw);
uint8_t irq = _sercom_get_irq_num(hw);
for (uint32_t i = 0; i < 4; i++) {
NVIC_EnableIRQ((IRQn_Type)irq++);
}
return ERR_NONE;
}
/** \internal Disable SERCOM SPI
*
* \param[in] hw Pointer to the hardware register base.
*
* \return Disabling status
*/
static int32_t _spi_sync_disable(void *const hw)
{
if (hri_sercomspi_is_syncing(hw, SERCOM_SPI_SYNCBUSY_SWRST)) {
return ERR_BUSY;
}
hri_sercomspi_clear_CTRLA_ENABLE_bit(hw);
return ERR_NONE;
}
/** \internal Disable SERCOM SPI
*
* \param[in] hw Pointer to the hardware register base.
*
* \return Disabling status
*/
static int32_t _spi_async_disable(void *const hw)
{
_spi_sync_disable(hw);
hri_sercomspi_clear_INTEN_reg(
hw, SERCOM_SPI_INTFLAG_ERROR | SERCOM_SPI_INTFLAG_RXC | SERCOM_SPI_INTFLAG_TXC | SERCOM_SPI_INTFLAG_DRE);
uint8_t irq = _sercom_get_irq_num(hw);
for (uint32_t i = 0; i < 4; i++) {
NVIC_DisableIRQ((IRQn_Type)irq++);
}
return ERR_NONE;
}
/** \internal Set SERCOM SPI mode
*
* \param[in] hw Pointer to the hardware register base.
* \param[in] mode The mode to set
*
* \return Setting mode status
*/
static int32_t _spi_set_mode(void *const hw, const enum spi_transfer_mode mode)
{
uint32_t ctrla;
if (hri_sercomspi_is_syncing(hw, SERCOM_SPI_SYNCBUSY_SWRST | SERCOM_SPI_SYNCBUSY_ENABLE)) {
return ERR_BUSY;
}
ctrla = hri_sercomspi_read_CTRLA_reg(hw);
ctrla &= ~(SERCOM_SPI_CTRLA_CPOL | SERCOM_SPI_CTRLA_CPHA);
ctrla |= (mode & 0x3u) << SERCOM_SPI_CTRLA_CPHA_Pos;
hri_sercomspi_write_CTRLA_reg(hw, ctrla);
return ERR_NONE;
}
/** \internal Set SERCOM SPI baudrate
*
* \param[in] hw Pointer to the hardware register base.
* \param[in] baud_val The baudrate to set
*
* \return Setting baudrate status
*/
static int32_t _spi_set_baudrate(void *const hw, const uint32_t baud_val)
{
if (hri_sercomspi_is_syncing(hw, SERCOM_SPI_SYNCBUSY_SWRST)) {
return ERR_BUSY;
}
hri_sercomspi_write_BAUD_reg(hw, baud_val);
return ERR_NONE;
}
/** \internal Set SERCOM SPI char size
*
* \param[in] hw Pointer to the hardware register base.
* \param[in] baud_val The baudrate to set
* \param[out] size Stored char size
*
* \return Setting char size status
*/
static int32_t _spi_set_char_size(void *const hw, const enum spi_char_size char_size, uint8_t *const size)
{
/* Only 8-bit or 9-bit accepted */
if (!(char_size == SPI_CHAR_SIZE_8 || char_size == SPI_CHAR_SIZE_9)) {
return ERR_INVALID_ARG;
}
if (hri_sercomspi_is_syncing(hw, SERCOM_SPI_SYNCBUSY_SWRST | SERCOM_SPI_SYNCBUSY_CTRLB)) {
return ERR_BUSY;
}
hri_sercomspi_write_CTRLB_CHSIZE_bf(hw, char_size);
*size = (char_size == SPI_CHAR_SIZE_8) ? 1 : 2;
return ERR_NONE;
}
/** \internal Set SERCOM SPI data order
*
* \param[in] hw Pointer to the hardware register base.
* \param[in] baud_val The baudrate to set
*
* \return Setting data order status
*/
static int32_t _spi_set_data_order(void *const hw, const enum spi_data_order dord)
{
uint32_t ctrla;
if (hri_sercomspi_is_syncing(hw, SERCOM_SPI_SYNCBUSY_SWRST)) {
return ERR_BUSY;
}
ctrla = hri_sercomspi_read_CTRLA_reg(hw);
if (dord == SPI_DATA_ORDER_LSB_1ST) {
ctrla |= SERCOM_SPI_CTRLA_DORD;
} else {
ctrla &= ~SERCOM_SPI_CTRLA_DORD;
}
hri_sercomspi_write_CTRLA_reg(hw, ctrla);
return ERR_NONE;
}
/** \brief Load SERCOM registers to init for SPI master mode
* The settings will be applied with default master mode, unsupported things
* are ignored.
* \param[in, out] hw Pointer to the hardware register base.
* \param[in] regs Pointer to register configuration values.
*/
static inline void _spi_load_regs_master(void *const hw, const struct sercomspi_regs_cfg *regs)
{
ASSERT(hw && regs);
hri_sercomspi_write_CTRLA_reg(
hw, regs->ctrla & ~(SERCOM_SPI_CTRLA_IBON | SERCOM_SPI_CTRLA_ENABLE | SERCOM_SPI_CTRLA_SWRST));
hri_sercomspi_write_CTRLB_reg(
hw,
(regs->ctrlb
& ~(SERCOM_SPI_CTRLB_MSSEN | SERCOM_SPI_CTRLB_AMODE_Msk | SERCOM_SPI_CTRLB_SSDE | SERCOM_SPI_CTRLB_PLOADEN))
| (SERCOM_SPI_CTRLB_RXEN));
hri_sercomspi_write_BAUD_reg(hw, regs->baud);
hri_sercomspi_write_DBGCTRL_reg(hw, regs->dbgctrl);
}
/** \brief Load SERCOM registers to init for SPI slave mode
* The settings will be applied with default slave mode, unsupported things
* are ignored.
* \param[in, out] hw Pointer to the hardware register base.
* \param[in] regs Pointer to register configuration values.
*/
static inline void _spi_load_regs_slave(void *const hw, const struct sercomspi_regs_cfg *regs)
{
ASSERT(hw && regs);
hri_sercomspi_write_CTRLA_reg(
hw, regs->ctrla & ~(SERCOM_SPI_CTRLA_IBON | SERCOM_SPI_CTRLA_ENABLE | SERCOM_SPI_CTRLA_SWRST));
hri_sercomspi_write_CTRLB_reg(hw,
(regs->ctrlb & ~(SERCOM_SPI_CTRLB_MSSEN))
| (SERCOM_SPI_CTRLB_RXEN | SERCOM_SPI_CTRLB_SSDE | SERCOM_SPI_CTRLB_PLOADEN));
hri_sercomspi_write_ADDR_reg(hw, regs->addr);
hri_sercomspi_write_DBGCTRL_reg(hw, regs->dbgctrl);
while (hri_sercomspi_is_syncing(hw, 0xFFFFFFFF))
;
}
/** \brief Return the pointer to register settings of specific SERCOM
* \param[in] hw_addr The hardware register base address.
* \return Pointer to register settings of specific SERCOM.
*/
static inline const struct sercomspi_regs_cfg *_spi_get_regs(const uint32_t hw_addr)
{
uint8_t n = _sercom_get_hardware_index((const void *)hw_addr);
uint8_t i;
for (i = 0; i < sizeof(sercomspi_regs) / sizeof(struct sercomspi_regs_cfg); i++) {
if (sercomspi_regs[i].n == n) {
return &sercomspi_regs[i];
}
}
return NULL;
}
int32_t _spi_m_sync_init(struct _spi_m_sync_dev *dev, void *const hw)
{
const struct sercomspi_regs_cfg *regs = _spi_get_regs((uint32_t)hw);
ASSERT(dev && hw);
if (regs == NULL) {
return ERR_INVALID_ARG;
}
if (!hri_sercomspi_is_syncing(hw, SERCOM_SPI_SYNCBUSY_SWRST)) {
uint32_t mode = regs->ctrla & SERCOM_SPI_CTRLA_MODE_Msk;
if (hri_sercomspi_get_CTRLA_reg(hw, SERCOM_SPI_CTRLA_ENABLE)) {
hri_sercomspi_clear_CTRLA_ENABLE_bit(hw);
hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_ENABLE);
}
hri_sercomspi_write_CTRLA_reg(hw, SERCOM_SPI_CTRLA_SWRST | mode);
}
hri_sercomspi_wait_for_sync(hw, SERCOM_SPI_SYNCBUSY_SWRST);
dev->prvt = hw;
if ((regs->ctrla & SERCOM_SPI_CTRLA_MODE_Msk) == SERCOM_USART_CTRLA_MODE_SPI_SLAVE) {
_spi_load_regs_slave(hw, regs);
} else {
_spi_load_regs_master(hw, regs);
}
/* Load character size from default hardware configuration */
dev->char_size = ((regs->ctrlb & SERCOM_SPI_CTRLB_CHSIZE_Msk) == 0) ? 1 : 2;
dev->dummy_byte = regs->dummy_byte;
return ERR_NONE;
}
int32_t _spi_s_sync_init(struct _spi_s_sync_dev *dev, void *const hw)
{
return _spi_m_sync_init(dev, hw);
}
int32_t _spi_m_async_init(struct _spi_async_dev *dev, void *const hw)
{
struct _spi_async_dev *spid = dev;
/* Do hardware initialize. */
int32_t rc = _spi_m_sync_init((struct _spi_m_sync_dev *)dev, hw);
if (rc < 0) {
return rc;
}
_sercom_init_irq_param(hw, (void *)dev);
/* Initialize callbacks: must use them */
spid->callbacks.complete = NULL;
spid->callbacks.rx = NULL;
spid->callbacks.tx = NULL;
uint8_t irq = _sercom_get_irq_num(hw);
for (uint32_t i = 0; i < 4; i++) {
NVIC_DisableIRQ((IRQn_Type)irq);
NVIC_ClearPendingIRQ((IRQn_Type)irq);
irq++;
}
return ERR_NONE;
}
int32_t _spi_s_async_init(struct _spi_s_async_dev *dev, void *const hw)
{
return _spi_m_async_init(dev, hw);
}
int32_t _spi_m_async_deinit(struct _spi_async_dev *dev)
{
NVIC_DisableIRQ((IRQn_Type)_sercom_get_irq_num(dev->prvt));
NVIC_ClearPendingIRQ((IRQn_Type)_sercom_get_irq_num(dev->prvt));
return _spi_deinit(dev->prvt);
}
int32_t _spi_s_async_deinit(struct _spi_s_async_dev *dev)
{
NVIC_DisableIRQ((IRQn_Type)_sercom_get_irq_num(dev->prvt));
NVIC_ClearPendingIRQ((IRQn_Type)_sercom_get_irq_num(dev->prvt));
return _spi_deinit(dev->prvt);
}
int32_t _spi_m_sync_deinit(struct _spi_m_sync_dev *dev)
{
return _spi_deinit(dev->prvt);
}
int32_t _spi_s_sync_deinit(struct _spi_s_sync_dev *dev)
{
return _spi_deinit(dev->prvt);
}
int32_t _spi_m_sync_enable(struct _spi_m_sync_dev *dev)
{
ASSERT(dev && dev->prvt);
return _spi_sync_enable(dev->prvt);
}
int32_t _spi_s_sync_enable(struct _spi_s_sync_dev *dev)
{
ASSERT(dev && dev->prvt);
return _spi_sync_enable(dev->prvt);
}
int32_t _spi_m_async_enable(struct _spi_async_dev *dev)
{
ASSERT(dev && dev->prvt);
return _spi_async_enable(dev->prvt);
}
int32_t _spi_s_async_enable(struct _spi_s_async_dev *dev)
{
ASSERT(dev && dev->prvt);
return _spi_async_enable(dev->prvt);
}
int32_t _spi_m_sync_disable(struct _spi_m_sync_dev *dev)
{
ASSERT(dev && dev->prvt);
return _spi_sync_disable(dev->prvt);
}
int32_t _spi_s_sync_disable(struct _spi_s_sync_dev *dev)
{
ASSERT(dev && dev->prvt);
return _spi_sync_disable(dev->prvt);
}
int32_t _spi_m_async_disable(struct _spi_async_dev *dev)
{
ASSERT(dev && dev->prvt);
return _spi_async_disable(dev->prvt);
}
int32_t _spi_s_async_disable(struct _spi_s_async_dev *dev)
{
ASSERT(dev && dev->prvt);
return _spi_async_disable(dev->prvt);
}
int32_t _spi_m_sync_set_mode(struct _spi_m_sync_dev *dev, const enum spi_transfer_mode mode)
{
ASSERT(dev && dev->prvt);
return _spi_set_mode(dev->prvt, mode);
}
int32_t _spi_m_async_set_mode(struct _spi_async_dev *dev, const enum spi_transfer_mode mode)
{
ASSERT(dev && dev->prvt);
return _spi_set_mode(dev->prvt, mode);
}
int32_t _spi_s_async_set_mode(struct _spi_s_async_dev *dev, const enum spi_transfer_mode mode)
{
ASSERT(dev && dev->prvt);
return _spi_set_mode(dev->prvt, mode);
}
int32_t _spi_s_sync_set_mode(struct _spi_s_sync_dev *dev, const enum spi_transfer_mode mode)
{
ASSERT(dev && dev->prvt);
return _spi_set_mode(dev->prvt, mode);
}
int32_t _spi_calc_baud_val(struct spi_dev *dev, const uint32_t clk, const uint32_t baud)
{
int32_t rc;
ASSERT(dev);
/* Not accept 0es */
if (clk == 0 || baud == 0) {
return ERR_INVALID_ARG;
}
/* Check baudrate range of current assigned clock */
if (!(baud <= (clk >> 1) && baud >= (clk >> 8))) {
return ERR_INVALID_ARG;
}
rc = ((clk >> 1) / baud) - 1;
return rc;
}
int32_t _spi_m_sync_set_baudrate(struct _spi_m_sync_dev *dev, const uint32_t baud_val)
{
ASSERT(dev && dev->prvt);
return _spi_set_baudrate(dev->prvt, baud_val);
}
int32_t _spi_m_async_set_baudrate(struct _spi_async_dev *dev, const uint32_t baud_val)
{
ASSERT(dev && dev->prvt);
return _spi_set_baudrate(dev->prvt, baud_val);
}
int32_t _spi_m_sync_set_char_size(struct _spi_m_sync_dev *dev, const enum spi_char_size char_size)
{
ASSERT(dev && dev->prvt);
return _spi_set_char_size(dev->prvt, char_size, &dev->char_size);
}
int32_t _spi_m_async_set_char_size(struct _spi_async_dev *dev, const enum spi_char_size char_size)
{
ASSERT(dev && dev->prvt);
return _spi_set_char_size(dev->prvt, char_size, &dev->char_size);
}
int32_t _spi_s_async_set_char_size(struct _spi_s_async_dev *dev, const enum spi_char_size char_size)
{
ASSERT(dev && dev->prvt);
return _spi_set_char_size(dev->prvt, char_size, &dev->char_size);
}
int32_t _spi_s_sync_set_char_size(struct _spi_s_sync_dev *dev, const enum spi_char_size char_size)
{
ASSERT(dev && dev->prvt);
return _spi_set_char_size(dev->prvt, char_size, &dev->char_size);
}
int32_t _spi_m_sync_set_data_order(struct _spi_m_sync_dev *dev, const enum spi_data_order dord)
{
ASSERT(dev && dev->prvt);
return _spi_set_data_order(dev->prvt, dord);
}
int32_t _spi_m_async_set_data_order(struct _spi_async_dev *dev, const enum spi_data_order dord)
{
ASSERT(dev && dev->prvt);
return _spi_set_data_order(dev->prvt, dord);
}
int32_t _spi_s_async_set_data_order(struct _spi_s_async_dev *dev, const enum spi_data_order dord)
{
ASSERT(dev && dev->prvt);
return _spi_set_data_order(dev->prvt, dord);
}
int32_t _spi_s_sync_set_data_order(struct _spi_s_sync_dev *dev, const enum spi_data_order dord)
{
ASSERT(dev && dev->prvt);
return _spi_set_data_order(dev->prvt, dord);
}
/** Wait until SPI bus idle. */
static inline void _spi_wait_bus_idle(void *const hw)
{
while (!(hri_sercomspi_get_INTFLAG_reg(hw, SERCOM_SPI_INTFLAG_TXC | SERCOM_SPI_INTFLAG_DRE))) {
;
}
hri_sercomspi_clear_INTFLAG_reg(hw, SERCOM_SPI_INTFLAG_TXC | SERCOM_SPI_INTFLAG_DRE);
}
/** Holds run time information for message sync transaction. */
struct _spi_trans_ctrl {
/** Pointer to transmitting data buffer. */
uint8_t *txbuf;
/** Pointer to receiving data buffer. */
uint8_t *rxbuf;
/** Count number of data transmitted. */
uint32_t txcnt;
/** Count number of data received. */
uint32_t rxcnt;
/** Data character size. */
uint8_t char_size;
};
/** Check interrupt flag of RXC and update transaction runtime information. */
static inline bool _spi_rx_check_and_receive(void *const hw, const uint32_t iflag, struct _spi_trans_ctrl *ctrl)
{
uint32_t data;
if (!(iflag & SERCOM_SPI_INTFLAG_RXC)) {
return false;
}
data = hri_sercomspi_read_DATA_reg(hw);
if (ctrl->rxbuf) {
*ctrl->rxbuf++ = (uint8_t)data;
if (ctrl->char_size > 1) {
*ctrl->rxbuf++ = (uint8_t)(data >> 8);
}
}
ctrl->rxcnt++;
return true;
}
/** Check interrupt flag of DRE and update transaction runtime information. */
static inline void _spi_tx_check_and_send(void *const hw, const uint32_t iflag, struct _spi_trans_ctrl *ctrl,
uint16_t dummy)
{
uint32_t data;
if (!(SERCOM_SPI_INTFLAG_DRE & iflag)) {
return;
}
if (ctrl->txbuf) {
data = *ctrl->txbuf++;
if (ctrl->char_size > 1) {
data |= (*ctrl->txbuf) << 8;
ctrl->txbuf++;
}
} else {
data = dummy;
}
ctrl->txcnt++;
hri_sercomspi_write_DATA_reg(hw, data);
}
/** Check interrupt flag of ERROR and update transaction runtime information. */
static inline int32_t _spi_err_check(const uint32_t iflag, void *const hw)
{
if (SERCOM_SPI_INTFLAG_ERROR & iflag) {
hri_sercomspi_clear_STATUS_reg(hw, ~0);
hri_sercomspi_clear_INTFLAG_reg(hw, SERCOM_SPI_INTFLAG_ERROR);
return ERR_OVERFLOW;
}
return ERR_NONE;
}
int32_t _spi_m_sync_trans(struct _spi_m_sync_dev *dev, const struct spi_msg *msg)
{
void * hw = dev->prvt;
int32_t rc = 0;
struct _spi_trans_ctrl ctrl = {msg->txbuf, msg->rxbuf, 0, 0, dev->char_size};
ASSERT(dev && hw);
/* If settings are not applied (pending), we can not go on */
if (hri_sercomspi_is_syncing(
hw, (SERCOM_SPI_SYNCBUSY_SWRST | SERCOM_SPI_SYNCBUSY_ENABLE | SERCOM_SPI_SYNCBUSY_CTRLB))) {
return ERR_BUSY;
}
/* SPI must be enabled to start synchronous transfer */
if (!hri_sercomspi_get_CTRLA_ENABLE_bit(hw)) {
return ERR_NOT_INITIALIZED;
}
for (;;) {
uint32_t iflag = hri_sercomspi_read_INTFLAG_reg(hw);
if (!_spi_rx_check_and_receive(hw, iflag, &ctrl)) {
/* In master mode, do not start next byte before previous byte received
* to make better output waveform */
if (ctrl.rxcnt >= ctrl.txcnt) {
_spi_tx_check_and_send(hw, iflag, &ctrl, dev->dummy_byte);
}
}
rc = _spi_err_check(iflag, hw);
if (rc < 0) {
break;
}
if (ctrl.txcnt >= msg->size && ctrl.rxcnt >= msg->size) {
rc = ctrl.txcnt;
break;
}
}
/* Wait until SPI bus idle */
_spi_wait_bus_idle(hw);
return rc;
}
int32_t _spi_m_async_enable_tx(struct _spi_async_dev *dev, bool state)
{
void *hw = dev->prvt;
ASSERT(dev && hw);
if (state) {
hri_sercomspi_set_INTEN_DRE_bit(hw);
} else {
hri_sercomspi_clear_INTEN_DRE_bit(hw);
}
return ERR_NONE;
}
int32_t _spi_s_async_enable_tx(struct _spi_s_async_dev *dev, bool state)
{
return _spi_m_async_enable_tx(dev, state);
}
int32_t _spi_m_async_enable_rx(struct _spi_async_dev *dev, bool state)
{
void *hw = dev->prvt;
ASSERT(dev);
ASSERT(hw);
if (state) {
hri_sercomspi_set_INTEN_RXC_bit(hw);
} else {
hri_sercomspi_clear_INTEN_RXC_bit(hw);
}
return ERR_NONE;
}
int32_t _spi_s_async_enable_rx(struct _spi_s_async_dev *dev, bool state)
{
return _spi_m_async_enable_rx(dev, state);
}
int32_t _spi_m_async_enable_tx_complete(struct _spi_async_dev *dev, bool state)
{
ASSERT(dev && dev->prvt);
if (state) {
hri_sercomspi_set_INTEN_TXC_bit(dev->prvt);
} else {
hri_sercomspi_clear_INTEN_TXC_bit(dev->prvt);
}
return ERR_NONE;
}
int32_t _spi_s_async_enable_ss_detect(struct _spi_s_async_dev *dev, bool state)
{
return _spi_m_async_enable_tx_complete(dev, state);
}
int32_t _spi_m_async_write_one(struct _spi_async_dev *dev, uint16_t data)
{
ASSERT(dev && dev->prvt);
hri_sercomspi_write_DATA_reg(dev->prvt, data);
return ERR_NONE;
}
int32_t _spi_s_async_write_one(struct _spi_s_async_dev *dev, uint16_t data)
{
ASSERT(dev && dev->prvt);
hri_sercomspi_write_DATA_reg(dev->prvt, data);
return ERR_NONE;
}
int32_t _spi_s_sync_write_one(struct _spi_s_sync_dev *dev, uint16_t data)
{
ASSERT(dev && dev->prvt);
hri_sercomspi_write_DATA_reg(dev->prvt, data);
return ERR_NONE;
}
uint16_t _spi_m_async_read_one(struct _spi_async_dev *dev)
{
ASSERT(dev && dev->prvt);
return hri_sercomspi_read_DATA_reg(dev->prvt);
}
uint16_t _spi_s_async_read_one(struct _spi_s_async_dev *dev)
{
ASSERT(dev && dev->prvt);
return hri_sercomspi_read_DATA_reg(dev->prvt);
}
uint16_t _spi_s_sync_read_one(struct _spi_s_sync_dev *dev)
{
ASSERT(dev && dev->prvt);
return hri_sercomspi_read_DATA_reg(dev->prvt);
}
int32_t _spi_m_async_register_callback(struct _spi_async_dev *dev, const enum _spi_async_dev_cb_type cb_type,
const FUNC_PTR func)
{
typedef void (*func_t)(void);
struct _spi_async_dev *spid = dev;
ASSERT(dev && (cb_type < SPI_DEV_CB_N));
func_t *p_ls = (func_t *)&spid->callbacks;
p_ls[cb_type] = (func_t)func;
return ERR_NONE;
}
int32_t _spi_s_async_register_callback(struct _spi_s_async_dev *dev, const enum _spi_s_async_dev_cb_type cb_type,
const FUNC_PTR func)
{
return _spi_m_async_register_callback(dev, cb_type, func);
}
bool _spi_s_sync_is_tx_ready(struct _spi_s_sync_dev *dev)
{
ASSERT(dev && dev->prvt);
return hri_sercomi2cm_get_INTFLAG_reg(dev->prvt, SERCOM_SPI_INTFLAG_DRE);
}
bool _spi_s_sync_is_rx_ready(struct _spi_s_sync_dev *dev)
{
ASSERT(dev && dev->prvt);
return hri_sercomi2cm_get_INTFLAG_reg(dev->prvt, SERCOM_SPI_INTFLAG_RXC);
}
bool _spi_s_sync_is_ss_deactivated(struct _spi_s_sync_dev *dev)
{
void *hw = dev->prvt;
ASSERT(dev && hw);
if (hri_sercomi2cm_get_INTFLAG_reg(hw, SERCOM_SPI_INTFLAG_TXC)) {
hri_sercomspi_clear_INTFLAG_reg(hw, SERCOM_SPI_INTFLAG_TXC);
return true;
}
return false;
}
bool _spi_s_sync_is_error(struct _spi_s_sync_dev *dev)
{
void *hw = dev->prvt;
ASSERT(dev && hw);
if (hri_sercomi2cm_get_INTFLAG_reg(hw, SERCOM_SPI_INTFLAG_ERROR)) {
hri_sercomspi_clear_STATUS_reg(hw, SERCOM_SPI_STATUS_BUFOVF);
hri_sercomspi_clear_INTFLAG_reg(hw, SERCOM_SPI_INTFLAG_ERROR);
return true;
}
return false;
}
/**
* \brief Enable/disable SPI master interrupt
*
* param[in] device The pointer to SPI master device instance
* param[in] type The type of interrupt to disable/enable if applicable
* param[in] state Enable or disable
*/
void _spi_m_async_set_irq_state(struct _spi_async_dev *const device, const enum _spi_async_dev_cb_type type,
const bool state)
{
ASSERT(device);
if (SPI_DEV_CB_ERROR == type) {
hri_sercomspi_write_INTEN_ERROR_bit(device->prvt, state);
}
}
/**
* \brief Enable/disable SPI slave interrupt
*
* param[in] device The pointer to SPI slave device instance
* param[in] type The type of interrupt to disable/enable if applicable
* param[in] state Enable or disable
*/
void _spi_s_async_set_irq_state(struct _spi_async_dev *const device, const enum _spi_async_dev_cb_type type,
const bool state)
{
_spi_m_async_set_irq_state(device, type, state);
}