You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
6.4 KiB
HTML
130 lines
6.4 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
|
<html>
|
|
<!-- This manual describes how to install and use the GNU multiple precision
|
|
arithmetic library, version 6.1.0.
|
|
|
|
Copyright 1991, 1993-2015 Free Software Foundation, Inc.
|
|
|
|
Permission is granted to copy, distribute and/or modify this document under
|
|
the terms of the GNU Free Documentation License, Version 1.3 or any later
|
|
version published by the Free Software Foundation; with no Invariant Sections,
|
|
with the Front-Cover Texts being "A GNU Manual", and with the Back-Cover
|
|
Texts being "You have freedom to copy and modify this GNU Manual, like GNU
|
|
software". A copy of the license is included in
|
|
GNU Free Documentation License. -->
|
|
<!-- Created by GNU Texinfo 6.4, http://www.gnu.org/software/texinfo/ -->
|
|
<head>
|
|
<title>Subquadratic GCD (GNU MP 6.1.0)</title>
|
|
|
|
<meta name="description" content="How to install and use the GNU multiple precision arithmetic library, version 6.1.0.">
|
|
<meta name="keywords" content="Subquadratic GCD (GNU MP 6.1.0)">
|
|
<meta name="resource-type" content="document">
|
|
<meta name="distribution" content="global">
|
|
<meta name="Generator" content="makeinfo">
|
|
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
|
|
<link href="index.html#Top" rel="start" title="Top">
|
|
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
|
|
<link href="Greatest-Common-Divisor-Algorithms.html#Greatest-Common-Divisor-Algorithms" rel="up" title="Greatest Common Divisor Algorithms">
|
|
<link href="Extended-GCD.html#Extended-GCD" rel="next" title="Extended GCD">
|
|
<link href="Lehmer_0027s-Algorithm.html#Lehmer_0027s-Algorithm" rel="prev" title="Lehmer's Algorithm">
|
|
<style type="text/css">
|
|
<!--
|
|
a.summary-letter {text-decoration: none}
|
|
blockquote.indentedblock {margin-right: 0em}
|
|
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
|
|
blockquote.smallquotation {font-size: smaller}
|
|
div.display {margin-left: 3.2em}
|
|
div.example {margin-left: 3.2em}
|
|
div.lisp {margin-left: 3.2em}
|
|
div.smalldisplay {margin-left: 3.2em}
|
|
div.smallexample {margin-left: 3.2em}
|
|
div.smalllisp {margin-left: 3.2em}
|
|
kbd {font-style: oblique}
|
|
pre.display {font-family: inherit}
|
|
pre.format {font-family: inherit}
|
|
pre.menu-comment {font-family: serif}
|
|
pre.menu-preformatted {font-family: serif}
|
|
pre.smalldisplay {font-family: inherit; font-size: smaller}
|
|
pre.smallexample {font-size: smaller}
|
|
pre.smallformat {font-family: inherit; font-size: smaller}
|
|
pre.smalllisp {font-size: smaller}
|
|
span.nolinebreak {white-space: nowrap}
|
|
span.roman {font-family: initial; font-weight: normal}
|
|
span.sansserif {font-family: sans-serif; font-weight: normal}
|
|
ul.no-bullet {list-style: none}
|
|
-->
|
|
</style>
|
|
|
|
|
|
</head>
|
|
|
|
<body lang="en">
|
|
<a name="Subquadratic-GCD"></a>
|
|
<div class="header">
|
|
<p>
|
|
Next: <a href="Extended-GCD.html#Extended-GCD" accesskey="n" rel="next">Extended GCD</a>, Previous: <a href="Lehmer_0027s-Algorithm.html#Lehmer_0027s-Algorithm" accesskey="p" rel="prev">Lehmer's Algorithm</a>, Up: <a href="Greatest-Common-Divisor-Algorithms.html#Greatest-Common-Divisor-Algorithms" accesskey="u" rel="up">Greatest Common Divisor Algorithms</a> [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
|
</div>
|
|
<hr>
|
|
<a name="Subquadratic-GCD-1"></a>
|
|
<h4 class="subsection">15.3.3 Subquadratic GCD</h4>
|
|
|
|
<p>For inputs larger than <code>GCD_DC_THRESHOLD</code>, GCD is computed via the HGCD
|
|
(Half GCD) function, as a generalization to Lehmer’s algorithm.
|
|
</p>
|
|
<p>Let the inputs <em>a,b</em> be of size <em>N</em> limbs each. Put <em>S = floor(N/2) + 1</em>. Then HGCD(a,b) returns a transformation
|
|
matrix <em>T</em> with non-negative elements, and reduced numbers <em>(c;d) =
|
|
T^{-1} (a;b)</em>. The reduced numbers <em>c,d</em> must be larger than <em>S</em>
|
|
limbs, while their difference <em>abs(c-d)</em> must fit in <em>S</em> limbs. The
|
|
matrix elements will also be of size roughly <em>N/2</em>.
|
|
</p>
|
|
<p>The HGCD base case uses Lehmer’s algorithm, but with the above stop condition
|
|
that returns reduced numbers and the corresponding transformation matrix
|
|
half-way through. For inputs larger than <code>HGCD_THRESHOLD</code>, HGCD is
|
|
computed recursively, using the divide and conquer algorithm in “On
|
|
Schönhage’s algorithm and subquadratic integer GCD computation” by Möller
|
|
(see <a href="References.html#References">References</a>). The recursive algorithm consists of these main
|
|
steps.
|
|
</p>
|
|
<ul>
|
|
<li> Call HGCD recursively, on the most significant <em>N/2</em> limbs. Apply the
|
|
resulting matrix <em>T_1</em> to the full numbers, reducing them to a size just
|
|
above <em>3N/2</em>.
|
|
|
|
</li><li> Perform a small number of division or subtraction steps to reduce the numbers
|
|
to size below <em>3N/2</em>. This is essential mainly for the unlikely case of
|
|
large quotients.
|
|
|
|
</li><li> Call HGCD recursively, on the most significant <em>N/2</em> limbs of the reduced
|
|
numbers. Apply the resulting matrix <em>T_2</em> to the full numbers, reducing
|
|
them to a size just above <em>N/2</em>.
|
|
|
|
</li><li> Compute <em>T = T_1 T_2</em>.
|
|
|
|
</li><li> Perform a small number of division and subtraction steps to satisfy the
|
|
requirements, and return.
|
|
</li></ul>
|
|
|
|
<p>GCD is then implemented as a loop around HGCD, similarly to Lehmer’s
|
|
algorithm. Where Lehmer repeatedly chops off the top two limbs, calls
|
|
<code>mpn_hgcd2</code>, and applies the resulting matrix to the full numbers, the
|
|
sub-quadratic GCD chops off the most significant third of the limbs (the
|
|
proportion is a tuning parameter, and <em>1/3</em> seems to be more efficient
|
|
than, e.g, <em>1/2</em>), calls <code>mpn_hgcd</code>, and applies the resulting
|
|
matrix. Once the input numbers are reduced to size below
|
|
<code>GCD_DC_THRESHOLD</code>, Lehmer’s algorithm is used for the rest of the work.
|
|
</p>
|
|
<p>The asymptotic running time of both HGCD and GCD is <em>O(M(N)*log(N))</em>,
|
|
where <em>M(N)</em> is the time for multiplying two <em>N</em>-limb numbers.
|
|
</p>
|
|
|
|
<hr>
|
|
<div class="header">
|
|
<p>
|
|
Next: <a href="Extended-GCD.html#Extended-GCD" accesskey="n" rel="next">Extended GCD</a>, Previous: <a href="Lehmer_0027s-Algorithm.html#Lehmer_0027s-Algorithm" accesskey="p" rel="prev">Lehmer's Algorithm</a>, Up: <a href="Greatest-Common-Divisor-Algorithms.html#Greatest-Common-Divisor-Algorithms" accesskey="u" rel="up">Greatest Common Divisor Algorithms</a> [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
|
</div>
|
|
|
|
|
|
|
|
</body>
|
|
</html>
|