You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

97 lines
4.6 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual describes how to install and use the GNU multiple precision
arithmetic library, version 6.1.0.
Copyright 1991, 1993-2015 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being "A GNU Manual", and with the Back-Cover
Texts being "You have freedom to copy and modify this GNU Manual, like GNU
software". A copy of the license is included in
GNU Free Documentation License. -->
<!-- Created by GNU Texinfo 6.4, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Prime Testing Algorithm (GNU MP 6.1.0)</title>
<meta name="description" content="How to install and use the GNU multiple precision arithmetic library, version 6.1.0.">
<meta name="keywords" content="Prime Testing Algorithm (GNU MP 6.1.0)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="Other-Algorithms.html#Other-Algorithms" rel="up" title="Other Algorithms">
<link href="Factorial-Algorithm.html#Factorial-Algorithm" rel="next" title="Factorial Algorithm">
<link href="Other-Algorithms.html#Other-Algorithms" rel="prev" title="Other Algorithms">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="Prime-Testing-Algorithm"></a>
<div class="header">
<p>
Next: <a href="Factorial-Algorithm.html#Factorial-Algorithm" accesskey="n" rel="next">Factorial Algorithm</a>, Previous: <a href="Other-Algorithms.html#Other-Algorithms" accesskey="p" rel="prev">Other Algorithms</a>, Up: <a href="Other-Algorithms.html#Other-Algorithms" accesskey="u" rel="up">Other Algorithms</a> &nbsp; [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Prime-Testing"></a>
<h4 class="subsection">15.7.1 Prime Testing</h4>
<a name="index-Prime-testing-algorithms"></a>
<p>The primality testing in <code>mpz_probab_prime_p</code> (see <a href="Number-Theoretic-Functions.html#Number-Theoretic-Functions">Number Theoretic Functions</a>) first does some trial division by small factors and then uses the
Miller-Rabin probabilistic primality testing algorithm, as described in Knuth
section 4.5.4 algorithm P (see <a href="References.html#References">References</a>).
</p>
<p>For an odd input <em>n</em>, and with <em>n = q*2^k+1</em> where
<em>q</em> is odd, this algorithm selects a random base <em>x</em> and tests
whether <em>x^q mod n</em> is 1 or <em>-1</em>, or an <em>x^(q*2^j) mod n</em> is <em>1</em>, for <em>1&lt;=j&lt;=k</em>. If so then <em>n</em>
is probably prime, if not then <em>n</em> is definitely composite.
</p>
<p>Any prime <em>n</em> will pass the test, but some composites do too. Such
composites are known as strong pseudoprimes to base <em>x</em>. No <em>n</em> is
a strong pseudoprime to more than <em>1/4</em> of all bases (see Knuth exercise
22), hence with <em>x</em> chosen at random there&rsquo;s no more than a <em>1/4</em>
chance a &ldquo;probable prime&rdquo; will in fact be composite.
</p>
<p>In fact strong pseudoprimes are quite rare, making the test much more
powerful than this analysis would suggest, but <em>1/4</em> is all that&rsquo;s proven
for an arbitrary <em>n</em>.
</p>
</body>
</html>