You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
4.6 KiB
HTML
97 lines
4.6 KiB
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
|
<html>
|
|
<!-- This manual describes how to install and use the GNU multiple precision
|
|
arithmetic library, version 6.1.0.
|
|
|
|
Copyright 1991, 1993-2015 Free Software Foundation, Inc.
|
|
|
|
Permission is granted to copy, distribute and/or modify this document under
|
|
the terms of the GNU Free Documentation License, Version 1.3 or any later
|
|
version published by the Free Software Foundation; with no Invariant Sections,
|
|
with the Front-Cover Texts being "A GNU Manual", and with the Back-Cover
|
|
Texts being "You have freedom to copy and modify this GNU Manual, like GNU
|
|
software". A copy of the license is included in
|
|
GNU Free Documentation License. -->
|
|
<!-- Created by GNU Texinfo 6.4, http://www.gnu.org/software/texinfo/ -->
|
|
<head>
|
|
<title>Prime Testing Algorithm (GNU MP 6.1.0)</title>
|
|
|
|
<meta name="description" content="How to install and use the GNU multiple precision arithmetic library, version 6.1.0.">
|
|
<meta name="keywords" content="Prime Testing Algorithm (GNU MP 6.1.0)">
|
|
<meta name="resource-type" content="document">
|
|
<meta name="distribution" content="global">
|
|
<meta name="Generator" content="makeinfo">
|
|
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
|
|
<link href="index.html#Top" rel="start" title="Top">
|
|
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
|
|
<link href="Other-Algorithms.html#Other-Algorithms" rel="up" title="Other Algorithms">
|
|
<link href="Factorial-Algorithm.html#Factorial-Algorithm" rel="next" title="Factorial Algorithm">
|
|
<link href="Other-Algorithms.html#Other-Algorithms" rel="prev" title="Other Algorithms">
|
|
<style type="text/css">
|
|
<!--
|
|
a.summary-letter {text-decoration: none}
|
|
blockquote.indentedblock {margin-right: 0em}
|
|
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
|
|
blockquote.smallquotation {font-size: smaller}
|
|
div.display {margin-left: 3.2em}
|
|
div.example {margin-left: 3.2em}
|
|
div.lisp {margin-left: 3.2em}
|
|
div.smalldisplay {margin-left: 3.2em}
|
|
div.smallexample {margin-left: 3.2em}
|
|
div.smalllisp {margin-left: 3.2em}
|
|
kbd {font-style: oblique}
|
|
pre.display {font-family: inherit}
|
|
pre.format {font-family: inherit}
|
|
pre.menu-comment {font-family: serif}
|
|
pre.menu-preformatted {font-family: serif}
|
|
pre.smalldisplay {font-family: inherit; font-size: smaller}
|
|
pre.smallexample {font-size: smaller}
|
|
pre.smallformat {font-family: inherit; font-size: smaller}
|
|
pre.smalllisp {font-size: smaller}
|
|
span.nolinebreak {white-space: nowrap}
|
|
span.roman {font-family: initial; font-weight: normal}
|
|
span.sansserif {font-family: sans-serif; font-weight: normal}
|
|
ul.no-bullet {list-style: none}
|
|
-->
|
|
</style>
|
|
|
|
|
|
</head>
|
|
|
|
<body lang="en">
|
|
<a name="Prime-Testing-Algorithm"></a>
|
|
<div class="header">
|
|
<p>
|
|
Next: <a href="Factorial-Algorithm.html#Factorial-Algorithm" accesskey="n" rel="next">Factorial Algorithm</a>, Previous: <a href="Other-Algorithms.html#Other-Algorithms" accesskey="p" rel="prev">Other Algorithms</a>, Up: <a href="Other-Algorithms.html#Other-Algorithms" accesskey="u" rel="up">Other Algorithms</a> [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
|
</div>
|
|
<hr>
|
|
<a name="Prime-Testing"></a>
|
|
<h4 class="subsection">15.7.1 Prime Testing</h4>
|
|
<a name="index-Prime-testing-algorithms"></a>
|
|
|
|
<p>The primality testing in <code>mpz_probab_prime_p</code> (see <a href="Number-Theoretic-Functions.html#Number-Theoretic-Functions">Number Theoretic Functions</a>) first does some trial division by small factors and then uses the
|
|
Miller-Rabin probabilistic primality testing algorithm, as described in Knuth
|
|
section 4.5.4 algorithm P (see <a href="References.html#References">References</a>).
|
|
</p>
|
|
<p>For an odd input <em>n</em>, and with <em>n = q*2^k+1</em> where
|
|
<em>q</em> is odd, this algorithm selects a random base <em>x</em> and tests
|
|
whether <em>x^q mod n</em> is 1 or <em>-1</em>, or an <em>x^(q*2^j) mod n</em> is <em>1</em>, for <em>1<=j<=k</em>. If so then <em>n</em>
|
|
is probably prime, if not then <em>n</em> is definitely composite.
|
|
</p>
|
|
<p>Any prime <em>n</em> will pass the test, but some composites do too. Such
|
|
composites are known as strong pseudoprimes to base <em>x</em>. No <em>n</em> is
|
|
a strong pseudoprime to more than <em>1/4</em> of all bases (see Knuth exercise
|
|
22), hence with <em>x</em> chosen at random there’s no more than a <em>1/4</em>
|
|
chance a “probable prime” will in fact be composite.
|
|
</p>
|
|
<p>In fact strong pseudoprimes are quite rare, making the test much more
|
|
powerful than this analysis would suggest, but <em>1/4</em> is all that’s proven
|
|
for an arbitrary <em>n</em>.
|
|
</p>
|
|
|
|
|
|
|
|
|
|
</body>
|
|
</html>
|