You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

136 lines
6.6 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual describes how to install and use the GNU multiple precision
arithmetic library, version 6.1.0.
Copyright 1991, 1993-2015 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being "A GNU Manual", and with the Back-Cover
Texts being "You have freedom to copy and modify this GNU Manual, like GNU
software". A copy of the license is included in
GNU Free Documentation License. -->
<!-- Created by GNU Texinfo 6.4, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Fibonacci Numbers Algorithm (GNU MP 6.1.0)</title>
<meta name="description" content="How to install and use the GNU multiple precision arithmetic library, version 6.1.0.">
<meta name="keywords" content="Fibonacci Numbers Algorithm (GNU MP 6.1.0)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="Other-Algorithms.html#Other-Algorithms" rel="up" title="Other Algorithms">
<link href="Lucas-Numbers-Algorithm.html#Lucas-Numbers-Algorithm" rel="next" title="Lucas Numbers Algorithm">
<link href="Binomial-Coefficients-Algorithm.html#Binomial-Coefficients-Algorithm" rel="prev" title="Binomial Coefficients Algorithm">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="Fibonacci-Numbers-Algorithm"></a>
<div class="header">
<p>
Next: <a href="Lucas-Numbers-Algorithm.html#Lucas-Numbers-Algorithm" accesskey="n" rel="next">Lucas Numbers Algorithm</a>, Previous: <a href="Binomial-Coefficients-Algorithm.html#Binomial-Coefficients-Algorithm" accesskey="p" rel="prev">Binomial Coefficients Algorithm</a>, Up: <a href="Other-Algorithms.html#Other-Algorithms" accesskey="u" rel="up">Other Algorithms</a> &nbsp; [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Fibonacci-Numbers"></a>
<h4 class="subsection">15.7.4 Fibonacci Numbers</h4>
<a name="index-Fibonacci-number-algorithm"></a>
<p>The Fibonacci functions <code>mpz_fib_ui</code> and <code>mpz_fib2_ui</code> are designed
for calculating isolated <em>F[n]</em> or <em>F[n]</em>,<em>F[n-1]</em>
values efficiently.
</p>
<p>For small <em>n</em>, a table of single limb values in <code>__gmp_fib_table</code> is
used. On a 32-bit limb this goes up to <em>F[47]</em>, or on a 64-bit limb
up to <em>F[93]</em>. For convenience the table starts at <em>F[-1]</em>.
</p>
<p>Beyond the table, values are generated with a binary powering algorithm,
calculating a pair <em>F[n]</em> and <em>F[n-1]</em> working from high to
low across the bits of <em>n</em>. The formulas used are
</p>
<div class="example">
<pre class="example">F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k
F[2k-1] = F[k]^2 + F[k-1]^2
F[2k] = F[2k+1] - F[2k-1]
</pre></div>
<p>At each step, <em>k</em> is the high <em>b</em> bits of <em>n</em>. If the next bit
of <em>n</em> is 0 then <em>F[2k]</em>,<em>F[2k-1]</em> is used, or if
it&rsquo;s a 1 then <em>F[2k+1]</em>,<em>F[2k]</em> is used, and the process
repeated until all bits of <em>n</em> are incorporated. Notice these formulas
require just two squares per bit of <em>n</em>.
</p>
<p>It&rsquo;d be possible to handle the first few <em>n</em> above the single limb table
with simple additions, using the defining Fibonacci recurrence <em>F[k+1]=F[k]+F[k-1]</em>, but this is not done since it usually
turns out to be faster for only about 10 or 20 values of <em>n</em>, and
including a block of code for just those doesn&rsquo;t seem worthwhile. If they
really mattered it&rsquo;d be better to extend the data table.
</p>
<p>Using a table avoids lots of calculations on small numbers, and makes small
<em>n</em> go fast. A bigger table would make more small <em>n</em> go fast, it&rsquo;s
just a question of balancing size against desired speed. For GMP the code is
kept compact, with the emphasis primarily on a good powering algorithm.
</p>
<p><code>mpz_fib2_ui</code> returns both <em>F[n]</em> and <em>F[n-1]</em>, but
<code>mpz_fib_ui</code> is only interested in <em>F[n]</em>. In this case the last
step of the algorithm can become one multiply instead of two squares. One of
the following two formulas is used, according as <em>n</em> is odd or even.
</p>
<div class="example">
<pre class="example">F[2k] = F[k]*(F[k]+2F[k-1])
F[2k+1] = (2F[k]+F[k-1])*(2F[k]-F[k-1]) + 2*(-1)^k
</pre></div>
<p><em>F[2k+1]</em> here is the same as above, just rearranged to be a
multiply. For interest, the <em>2*(-1)^k</em> term both here and above
can be applied just to the low limb of the calculation, without a carry or
borrow into further limbs, which saves some code size. See comments with
<code>mpz_fib_ui</code> and the internal <code>mpn_fib2_ui</code> for how this is done.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Lucas-Numbers-Algorithm.html#Lucas-Numbers-Algorithm" accesskey="n" rel="next">Lucas Numbers Algorithm</a>, Previous: <a href="Binomial-Coefficients-Algorithm.html#Binomial-Coefficients-Algorithm" accesskey="p" rel="prev">Binomial Coefficients Algorithm</a>, Up: <a href="Other-Algorithms.html#Other-Algorithms" accesskey="u" rel="up">Other Algorithms</a> &nbsp; [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>