You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

204 lines
12 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual documents how to install and use the Multiple Precision
Floating-Point Reliable Library, version 3.1.4.
Copyright 1991, 1993-2016 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the
license is included in GNU Free Documentation License. -->
<!-- Created by GNU Texinfo 6.4, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Integer Related Functions (GNU MPFR 3.1.4)</title>
<meta name="description" content="How to install and use GNU MPFR, a library for reliable multiple precision
floating-point arithmetic, version 3.1.4.">
<meta name="keywords" content="Integer Related Functions (GNU MPFR 3.1.4)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="MPFR-Interface.html#MPFR-Interface" rel="up" title="MPFR Interface">
<link href="Rounding-Related-Functions.html#Rounding-Related-Functions" rel="next" title="Rounding Related Functions">
<link href="Formatted-Output-Functions.html#Formatted-Output-Functions" rel="prev" title="Formatted Output Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="Integer-Related-Functions"></a>
<div class="header">
<p>
Next: <a href="Rounding-Related-Functions.html#Rounding-Related-Functions" accesskey="n" rel="next">Rounding Related Functions</a>, Previous: <a href="Formatted-Output-Functions.html#Formatted-Output-Functions" accesskey="p" rel="prev">Formatted Output Functions</a>, Up: <a href="MPFR-Interface.html#MPFR-Interface" accesskey="u" rel="up">MPFR Interface</a> &nbsp; [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="index-Integer-related-functions"></a>
<a name="Integer-and-Remainder-Related-Functions"></a>
<h3 class="section">5.10 Integer and Remainder Related Functions</h3>
<dl>
<dt><a name="index-mpfr_005frint"></a>Function: <em>int</em> <strong>mpfr_rint</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dt><a name="index-mpfr_005fceil"></a>Function: <em>int</em> <strong>mpfr_ceil</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>)</em></dt>
<dt><a name="index-mpfr_005ffloor"></a>Function: <em>int</em> <strong>mpfr_floor</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>)</em></dt>
<dt><a name="index-mpfr_005fround"></a>Function: <em>int</em> <strong>mpfr_round</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>)</em></dt>
<dt><a name="index-mpfr_005ftrunc"></a>Function: <em>int</em> <strong>mpfr_trunc</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>)</em></dt>
<dd><p>Set <var>rop</var> to <var>op</var> rounded to an integer.
<code>mpfr_rint</code> rounds to the nearest representable integer in the
given direction <var>rnd</var>, <code>mpfr_ceil</code> rounds
to the next higher or equal representable integer, <code>mpfr_floor</code> to
the next lower or equal representable integer, <code>mpfr_round</code> to the
nearest representable integer, rounding halfway cases away from zero
(as in the roundTiesToAway mode of IEEE 754-2008),
and <code>mpfr_trunc</code> to the next representable integer toward zero.
</p>
<p>The returned value is zero when the result is exact, positive when it is
greater than the original value of <var>op</var>, and negative when it is smaller.
More precisely, the returned value is 0 when <var>op</var> is an integer
representable in <var>rop</var>, 1 or 1 when <var>op</var> is an integer
that is not representable in <var>rop</var>, 2 or 2 when <var>op</var> is
not an integer.
</p>
<p>When <var>op</var> is NaN, the NaN flag is set as usual. In the other cases,
the inexact flag is set when <var>rop</var> differs from <var>op</var>, following
the ISO C99 rule for the <code>rint</code> function. If you want the behavior to
be more like IEEE 754 / ISO TS 18661-1, i.e., the usual behavior where the
round-to-integer function is regarded as any other mathematical function,
you should use one the <code>mpfr_rint_*</code> functions instead (however it is
not possible to round to nearest with the even rounding rule yet).
</p>
<p>Note that <code>mpfr_round</code> is different from <code>mpfr_rint</code> called with
the rounding to nearest mode (where halfway cases are rounded to an even
integer or significand). Note also that no double rounding is performed; for
instance, 10.5 (1010.1 in binary) is rounded by <code>mpfr_rint</code> with
rounding to nearest to 12 (1100
in binary) in 2-bit precision, because the two enclosing numbers representable
on two bits are 8 and 12, and the closest is 12.
(If one first rounded to an integer, one would round 10.5 to 10 with
even rounding, and then 10 would be rounded to 8 again with even rounding.)
</p></dd></dl>
<dl>
<dt><a name="index-mpfr_005frint_005fceil"></a>Function: <em>int</em> <strong>mpfr_rint_ceil</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dt><a name="index-mpfr_005frint_005ffloor"></a>Function: <em>int</em> <strong>mpfr_rint_floor</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dt><a name="index-mpfr_005frint_005fround"></a>Function: <em>int</em> <strong>mpfr_rint_round</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dt><a name="index-mpfr_005frint_005ftrunc"></a>Function: <em>int</em> <strong>mpfr_rint_trunc</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dd><p>Set <var>rop</var> to <var>op</var> rounded to an integer.
<code>mpfr_rint_ceil</code> rounds to the next higher or equal integer,
<code>mpfr_rint_floor</code> to the next lower or equal integer,
<code>mpfr_rint_round</code> to the nearest integer, rounding halfway cases away
from zero, and <code>mpfr_rint_trunc</code> to the next integer toward zero.
If the result is not representable, it is rounded in the direction <var>rnd</var>.
The returned value is the ternary value associated with the considered
round-to-integer function (regarded in the same way as any other
mathematical function).
</p>
<p>Contrary to <code>mpfr_rint</code>, those functions do perform a double rounding:
first <var>op</var> is rounded to the nearest integer in the direction given by
the function name, then this nearest integer (if not representable) is
rounded in the given direction <var>rnd</var>. Thus these round-to-integer
functions behave more like the other mathematical functions, i.e., the
returned result is the correct rounding of the exact result of the function
in the real numbers.
</p>
<p>For example, <code>mpfr_rint_round</code> with rounding to nearest and a precision
of two bits rounds 6.5 to 7 (halfway cases away from zero), then 7 is
rounded to 8 by the round-even rule, despite the fact that 6 is also
representable on two bits, and is closer to 6.5 than 8.
</p></dd></dl>
<dl>
<dt><a name="index-mpfr_005ffrac"></a>Function: <em>int</em> <strong>mpfr_frac</strong> <em>(mpfr_t <var>rop</var>, mpfr_t <var>op</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dd><p>Set <var>rop</var> to the fractional part of <var>op</var>, having the same sign as
<var>op</var>, rounded in the direction <var>rnd</var> (unlike in <code>mpfr_rint</code>,
<var>rnd</var> affects only how the exact fractional part is rounded, not how
the fractional part is generated).
</p></dd></dl>
<dl>
<dt><a name="index-mpfr_005fmodf"></a>Function: <em>int</em> <strong>mpfr_modf</strong> <em>(mpfr_t <var>iop</var>, mpfr_t <var>fop</var>, mpfr_t <var>op</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dd><p>Set simultaneously <var>iop</var> to the integral part of <var>op</var> and <var>fop</var> to
the fractional part of <var>op</var>, rounded in the direction <var>rnd</var> with the
corresponding precision of <var>iop</var> and <var>fop</var> (equivalent to
<code>mpfr_trunc(<var>iop</var>, <var>op</var>, <var>rnd</var>)</code> and
<code>mpfr_frac(<var>fop</var>, <var>op</var>, <var>rnd</var>)</code>). The variables <var>iop</var> and
<var>fop</var> must be different. Return 0 iff both results are exact (see
<code>mpfr_sin_cos</code> for a more detailed description of the return value).
</p></dd></dl>
<dl>
<dt><a name="index-mpfr_005ffmod"></a>Function: <em>int</em> <strong>mpfr_fmod</strong> <em>(mpfr_t <var>r</var>, mpfr_t <var>x</var>, mpfr_t <var>y</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dt><a name="index-mpfr_005fremainder"></a>Function: <em>int</em> <strong>mpfr_remainder</strong> <em>(mpfr_t <var>r</var>, mpfr_t <var>x</var>, mpfr_t <var>y</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dt><a name="index-mpfr_005fremquo"></a>Function: <em>int</em> <strong>mpfr_remquo</strong> <em>(mpfr_t <var>r</var>, long* <var>q</var>, mpfr_t <var>x</var>, mpfr_t <var>y</var>, mpfr_rnd_t <var>rnd</var>)</em></dt>
<dd><p>Set <var>r</var> to the value of <em><var>x</var> - <var>n</var><var>y</var></em>, rounded
according to the direction <var>rnd</var>, where <var>n</var> is the integer quotient
of <var>x</var> divided by <var>y</var>, defined as follows: <var>n</var> is rounded
toward zero for <code>mpfr_fmod</code>, and to the nearest integer (ties rounded
to even) for <code>mpfr_remainder</code> and <code>mpfr_remquo</code>.
</p>
<p>Special values are handled as described in Section F.9.7.1 of
the ISO C99 standard:
If <var>x</var> is infinite or <var>y</var> is zero, <var>r</var> is NaN.
If <var>y</var> is infinite and <var>x</var> is finite, <var>r</var> is <var>x</var> rounded
to the precision of <var>r</var>.
If <var>r</var> is zero, it has the sign of <var>x</var>.
The return value is the ternary value corresponding to <var>r</var>.
</p>
<p>Additionally, <code>mpfr_remquo</code> stores
the low significant bits from the quotient <var>n</var> in <var>*q</var>
(more precisely the number of bits in a <code>long</code> minus one),
with the sign of <var>x</var> divided by <var>y</var>
(except if those low bits are all zero, in which case zero is returned).
Note that <var>x</var> may be so large in magnitude relative to <var>y</var> that an
exact representation of the quotient is not practical.
The <code>mpfr_remainder</code> and <code>mpfr_remquo</code> functions are useful for
additive argument reduction.
</p></dd></dl>
<dl>
<dt><a name="index-mpfr_005finteger_005fp"></a>Function: <em>int</em> <strong>mpfr_integer_p</strong> <em>(mpfr_t <var>op</var>)</em></dt>
<dd><p>Return non-zero iff <var>op</var> is an integer.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Rounding-Related-Functions.html#Rounding-Related-Functions" accesskey="n" rel="next">Rounding Related Functions</a>, Previous: <a href="Formatted-Output-Functions.html#Formatted-Output-Functions" accesskey="p" rel="prev">Formatted Output Functions</a>, Up: <a href="MPFR-Interface.html#MPFR-Interface" accesskey="u" rel="up">MPFR Interface</a> &nbsp; [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>