You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

119 lines
5.7 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual describes how to install and use the GNU multiple precision
arithmetic library, version 6.1.0.
Copyright 1991, 1993-2015 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being "A GNU Manual", and with the Back-Cover
Texts being "You have freedom to copy and modify this GNU Manual, like GNU
software". A copy of the license is included in
GNU Free Documentation License. -->
<!-- Created by GNU Texinfo 6.4, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Radix to Binary (GNU MP 6.1.0)</title>
<meta name="description" content="How to install and use the GNU multiple precision arithmetic library, version 6.1.0.">
<meta name="keywords" content="Radix to Binary (GNU MP 6.1.0)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="Radix-Conversion-Algorithms.html#Radix-Conversion-Algorithms" rel="up" title="Radix Conversion Algorithms">
<link href="Other-Algorithms.html#Other-Algorithms" rel="next" title="Other Algorithms">
<link href="Binary-to-Radix.html#Binary-to-Radix" rel="prev" title="Binary to Radix">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="Radix-to-Binary"></a>
<div class="header">
<p>
Previous: <a href="Binary-to-Radix.html#Binary-to-Radix" accesskey="p" rel="prev">Binary to Radix</a>, Up: <a href="Radix-Conversion-Algorithms.html#Radix-Conversion-Algorithms" accesskey="u" rel="up">Radix Conversion Algorithms</a> &nbsp; [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Radix-to-Binary-1"></a>
<h4 class="subsection">15.6.2 Radix to Binary</h4>
<p><strong>This section needs to be rewritten, it currently describes the
algorithms used before GMP 4.3.</strong>
</p>
<p>Conversions from a power-of-2 radix into binary use a simple and fast
<em>O(N)</em> bitwise concatenation algorithm.
</p>
<p>Conversions from other radices use one of two algorithms. Sizes below
<code>SET_STR_PRECOMPUTE_THRESHOLD</code> use a basic <em>O(N^2)</em> method. Groups
of <em>n</em> digits are converted to limbs, where <em>n</em> is the biggest
power of the base <em>b</em> which will fit in a limb, then those groups are
accumulated into the result by multiplying by <em>b^n</em> and adding. This
saves multi-precision operations, as per Knuth section 4.4 part E
(see <a href="References.html#References">References</a>). Some special case code is provided for decimal, giving
the compiler a chance to optimize multiplications by 10.
</p>
<p>Above <code>SET_STR_PRECOMPUTE_THRESHOLD</code> a sub-quadratic algorithm is used.
First groups of <em>n</em> digits are converted into limbs. Then adjacent
limbs are combined into limb pairs with <em>x*b^n+y</em>, where <em>x</em>
and <em>y</em> are the limbs. Adjacent limb pairs are combined into quads
similarly with <em>x*b^(2n)+y</em>. This continues until a single block
remains, that being the result.
</p>
<p>The advantage of this method is that the multiplications for each <em>x</em> are
big blocks, allowing Karatsuba and higher algorithms to be used. But the cost
of calculating the powers <em>b^(n*2^i)</em> must be overcome.
<code>SET_STR_PRECOMPUTE_THRESHOLD</code> usually ends up quite big, around 5000 digits, and on
some processors much bigger still.
</p>
<p><code>SET_STR_PRECOMPUTE_THRESHOLD</code> is based on the input digits (and tuned
for decimal), though it might be better based on a limb count, so as to be
independent of the base. But that sort of count isn&rsquo;t used by the base case
and so would need some sort of initial calculation or estimate.
</p>
<p>The main reason <code>SET_STR_PRECOMPUTE_THRESHOLD</code> is so much bigger than the
corresponding <code>GET_STR_PRECOMPUTE_THRESHOLD</code> is that <code>mpn_mul_1</code> is
much faster than <code>mpn_divrem_1</code> (often by a factor of 5, or more).
</p>
<hr>
<div class="header">
<p>
Previous: <a href="Binary-to-Radix.html#Binary-to-Radix" accesskey="p" rel="prev">Binary to Radix</a>, Up: <a href="Radix-Conversion-Algorithms.html#Radix-Conversion-Algorithms" accesskey="u" rel="up">Radix Conversion Algorithms</a> &nbsp; [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>