You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

131 lines
6.4 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual describes how to install and use the GNU multiple precision
arithmetic library, version 6.1.0.
Copyright 1991, 1993-2015 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being "A GNU Manual", and with the Back-Cover
Texts being "You have freedom to copy and modify this GNU Manual, like GNU
software". A copy of the license is included in
GNU Free Documentation License. -->
<!-- Created by GNU Texinfo 6.4, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Exact Remainder (GNU MP 6.1.0)</title>
<meta name="description" content="How to install and use the GNU multiple precision arithmetic library, version 6.1.0.">
<meta name="keywords" content="Exact Remainder (GNU MP 6.1.0)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="Division-Algorithms.html#Division-Algorithms" rel="up" title="Division Algorithms">
<link href="Small-Quotient-Division.html#Small-Quotient-Division" rel="next" title="Small Quotient Division">
<link href="Exact-Division.html#Exact-Division" rel="prev" title="Exact Division">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="Exact-Remainder"></a>
<div class="header">
<p>
Next: <a href="Small-Quotient-Division.html#Small-Quotient-Division" accesskey="n" rel="next">Small Quotient Division</a>, Previous: <a href="Exact-Division.html#Exact-Division" accesskey="p" rel="prev">Exact Division</a>, Up: <a href="Division-Algorithms.html#Division-Algorithms" accesskey="u" rel="up">Division Algorithms</a> &nbsp; [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Exact-Remainder-1"></a>
<h4 class="subsection">15.2.6 Exact Remainder</h4>
<a name="index-Exact-remainder"></a>
<p>If the exact division algorithm is done with a full subtraction at each stage
and the dividend isn&rsquo;t a multiple of the divisor, then low zero limbs are
produced but with a remainder in the high limbs. For dividend <em>a</em>,
divisor <em>d</em>, quotient <em>q</em>, and <em>b = 2^mp_bits_per_limb</em>, this remainder
<em>r</em> is of the form
</p>
<div class="example">
<pre class="example">a = q*d + r*b^n
</pre></div>
<p><em>n</em> represents the number of zero limbs produced by the subtractions,
that being the number of limbs produced for <em>q</em>. <em>r</em> will be in the
range <em>0&lt;=r&lt;d</em> and can be viewed as a remainder, but one shifted up by
a factor of <em>b^n</em>.
</p>
<p>Carrying out full subtractions at each stage means the same number of cross
products must be done as a normal division, but there&rsquo;s still some single limb
divisions saved. When <em>d</em> is a single limb some simplifications arise,
providing good speedups on a number of processors.
</p>
<p>The functions <code>mpn_divexact_by3</code>, <code>mpn_modexact_1_odd</code> and the
internal <code>mpn_redc_X</code> functions differ subtly in how they return <em>r</em>,
leading to some negations in the above formula, but all are essentially the
same.
</p>
<a name="index-Divisibility-algorithm"></a>
<a name="index-Congruence-algorithm"></a>
<p>Clearly <em>r</em> is zero when <em>a</em> is a multiple of <em>d</em>, and this
leads to divisibility or congruence tests which are potentially more efficient
than a normal division.
</p>
<p>The factor of <em>b^n</em> on <em>r</em> can be ignored in a GCD when <em>d</em> is
odd, hence the use of <code>mpn_modexact_1_odd</code> by <code>mpn_gcd_1</code> and
<code>mpz_kronecker_ui</code> etc (see <a href="Greatest-Common-Divisor-Algorithms.html#Greatest-Common-Divisor-Algorithms">Greatest Common Divisor Algorithms</a>).
</p>
<p>Montgomery&rsquo;s REDC method for modular multiplications uses operands of the form
of <em>x*b^-n</em> and <em>y*b^-n</em> and on calculating <em>(x*b^-n)*(y*b^-n)</em> uses the factor of <em>b^n</em> in the exact
remainder to reach a product in the same form <em>(x*y)*b^-n</em>
(see <a href="Modular-Powering-Algorithm.html#Modular-Powering-Algorithm">Modular Powering Algorithm</a>).
</p>
<p>Notice that <em>r</em> generally gives no useful information about the ordinary
remainder <em>a mod d</em> since <em>b^n mod d</em> could be anything. If
however <em>b^n &equiv; 1 mod d</em>, then <em>r</em> is the negative of the
ordinary remainder. This occurs whenever <em>d</em> is a factor of
<em>b^n-1</em>, as for example with 3 in <code>mpn_divexact_by3</code>. For a 32 or
64 bit limb other such factors include 5, 17 and 257, but no particular use
has been found for this.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Small-Quotient-Division.html#Small-Quotient-Division" accesskey="n" rel="next">Small Quotient Division</a>, Previous: <a href="Exact-Division.html#Exact-Division" accesskey="p" rel="prev">Exact Division</a>, Up: <a href="Division-Algorithms.html#Division-Algorithms" accesskey="u" rel="up">Division Algorithms</a> &nbsp; [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>