avr-libc
2.0.0

Generated by Doxygen 1.6.3

Mon Jun 24 09:20:15 2019

CONTENTS i

Contents

1 AVR Libc 1
1.1 Introduction 1
1.2 General information about this library 1
1.3 Supported Devices 2
1.4 avrlibcLicense 12

2 Toolchain Overview 13
2.1 Introduction 13
22 FSFandGNU 13
23 GCC e 14
24 GNUBinutils o 14
2.5 avr-libc ... 16
2.6 Building Software 16
27 AVRDUDE 16
2.8 GDB/Insight/DDD 16
29 AVaRICE e 17
2.10 SimulAVRo 17
2,11 Utilities o oo e 17
2.12 Toolchain Distributions (Distros) 17
213 OpenSource o i e e e 17

3 Memory Areas and Using malloc() 18
3.1 Introduction 18
3.2 Internal vs. external RAM oL 0oL 19
3.3 Tunables formalloc() 19
3.4 Implementationdetails 21

4 Memory Sections 22
4.1 The.textSection 23
42 The .dataSection 23
43 The.bssSection 23
4.4 The .eeprom Section 23
4.5 The .noinit Section L oo 23

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS ii
4.6 The .initN Sections 24
4.7 The .finiN Sections oL oo 25
4.8 The .note.gnu.avr.deviceinfo Section 26
4.9 Using Sections in Assembler Code 27
4.10 Using SectionsinCCode 27

5 Data in Program Space 28
5.1 Introduction 28
52 ANoteOnconst 28
5.3 Storing and Retrieving Data in the Program Space 29
5.4 Storing and Retrieving Strings in the Program Space 30
55 Caveats e e 32

6 avr-libc and assembler programs 32
6.1 Introduction 32
6.2 Invokingthecompiler 33
6.3 Example program 33
6.4 Pseudo-opsandoperators 37

7 Inline Assembler Cookbook 38
7.1 GCCasmStatement. v 39
7.2 AssemblerCode 40
7.3 Inputand OutputOperands 41
7.4 Clobbers e 45
7.5 Assembler Macros 47
7.6 CStubFunctions 48
7.7 C Names Used in AssemblerCode 49
7.8 Links 49

8 How to Build a Library 50
8.1 Introduction 50
8.2 HowtheLinker Works 50
83 HowtoDesignalibrary 50
84 Creatingalibrary 51
85 Usingalibrary 52

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS iii
9 Benchmarks 52
9.1 Afewoflibcfunctions. 53
9.2 Mathfunctions. 54
10 Porting From IAR to AVR GCC 55
10.1 Introduction e 55
10.2 RegiSters v o vt e e e e e 56
10.3 Interrupt Service Routines ISRs) 56
10.4 Intrinsic Routines 57
10.5 Flash Variables 57
10.6 Non-Returningmain(), 58
10.7 Locking Registers o 59
11 Frequently Asked Questions 59
11.1 FAQIndex e 59
11.2 My program doesn’t recognize a variable updated within an interrupt
TOULING L e 61
11.3 T get "undefined reference to..." for functions like "sin()" 61
11.4 How to permanently bind a variable to a register? 62
11.5 How to modify MCUCR or WDTCR early? 62
11.6 What is all this _BV() stuffabout? 63
11.7 CanTuse C++onthe AVR? 63
11.8 Shouldn’t I initialize all my variables? 64
11.9 Why do some 16-bit timer registers sometimes get trashed? 65
11.10How do I use a #define’d constant in an asm statement? 65
11.11Why does the PC randomly jump around when single-stepping through
my program in avr-gdb?o 0oL oo oL 66
11.12How do I trace an assembler file in avr-gdb? 67
11.13How do I pass an IO port as a parameter to a function? 68
11.14What registers are used by the C compiler? 70
11.15How do I put an array of strings completely in ROM? 71
11.16How to use external RAM? 73
11.17Which-Oflagtouse? 74
11.18How do I relocate code to a fixed address? 74
11.19My UART is generating nonsense! My ATmegal28 keeps crashing!
Port F is completely broken!, 75

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS iv

11.20Why do all my "foo...bar" strings eat up the SRAM? 75
11.21Why does the compiler compile an 8-bit operation that uses bitwise
operators into a 16-bit operation in assembly? 76
11.22How to detect RAM memory and variable overlap problems? 77
11.231s it really impossible to program the ATtinyXX inC? 77
11.24What is this "clock skew detected" message? 77
11.25Why are (many) interrupt flags cleared by writing a logical 1? 78
11.26 Why have "programmed" fuses the bit value 07 79
11.27Which AVR-specific assembler operators are available? 79
11.28 Why are interrupts re-enabled in the middle of writing the stack pointer? 79
11.29Why are there five different linker scripts? 80
11.30How to add a raw binary image to linker output? 80
11.31How do I perform a software reset of the AVR? 81
11.321 am using floating point math. Why is the compiled code so big? Why
does my code not work? oo 82
11.33What pitfalls exist when writing reentrant code? 82
11.34Why are some addresses of the EEPROM corrupted (usually address
ZETO)7 . . e e e e e e 85
11.35Why is my baud rate wrong? 86
11.360n a device with more than 128 KiB of flash, how to make function
pointers work? 86
11.37Why is assigning ports in a "chain" abad idea? 86
12 Building and Installing the GNU Tool Chain 87
12.1 Building and Installing under Linux, FreeBSD, and Others 87
122 Required Tools e 88
123 Optional Tools o 88
12.4 GNU Binutils for the AVR target 89
12.5 GCCforthe AVRtarget., 90
126 AVRLIbC o 90
127 AVRDUDE 91
12.8 GDB forthe AVR target 91
129 SimulAVR 92
12.10AVaRICE 92
12.11Building and Installing under Windows 93

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS v

13

14

15

16

17

18

19

20

21

22

12.12Tools Required for Building the Toolchain for Windows 93
12.13Building the Toolchain for Windows 96
Using the GNU tools 101
13.1 Options for the C compileravr-gcc 101
13.1.1 Machine-specific options forthe AVR 101
13.1.2 Selected general compiler options 110
13.2 Options for the assembleravr-as 111
13.2.1 Machine-specific assembler options 111

13.2.2 Examples for assembler options passed through the C compiler 112

13.3 Controlling the linkeravr-1d 113
13.3.1 Selected linkeroptions 113
13.3.2 Passing linker options from the C compiler 114

Compiler optimization 115

14.1 Problems with reorderingcode 115

Using the avrdude program 117

Release Numbering and Methodology 119

16.1 Release Version Numbering Scheme 119

16.2 Releasing AVR Libc 119
16.2.1 Creatingan SVNbranch 119
16.2.2 Makingarelease 120

Acknowledgments 122

Todo List 123

Deprecated List 123

Module Index 124

20.1 Modules 124

Data Structure Index 126

21.1 Data Structures oo 126

File Index 126

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS vi

22.1 FileList e 126
23 Module Documentation 128
23.1 <alloca.h>: Allocate space inthestack 128
23.1.1 Detailed Description 128
23.1.2 Function Documentation 128

23.2 <asserth>: Diagnostics 129
23.2.1 Detailed Description 129
23.2.2 Define Documentation 129

23.3 <ctype.h>: Character Operations 130
23.3.1 Detailed Description 130
23.3.2 Function Documentation 131

23.4 <errno.h>: System Errors o o000 132
23.4.1 Detailed Description 133
23.4.2 Define Documentation 133
23.4.3 Variable Documentation 133

23.5 <inttypes.h>: Integer Type conversions 133
23.5.1 Detailed Description 136
23.5.2 Define Documentation 137
23.5.3 Typedef Documentation 147

23.6 <math.h>: Mathematics 147
23.6.1 Detailed Description 149
23.6.2 Define Documentation 149
23.6.3 Function Documentation 154

23.7 <setjmp.h>: Non-localgoto 160
23.7.1 Detailed Description 160
23.7.2 Function Documentation 161

23.8 <stdint.h>: Standard Integer Types 162
23.8.1 Detailed Description 165
23.8.2 Define Documentation 165
23.8.3 Typedef Documentation 171

23.9 <stdio.h>: Standard IO facilities 174
23.9.1 Detailed Description 175
23.9.2 Define Documentation 178

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS vii

23.9.3 Typedef Documentation 181
23.9.4 Function Documentation 181
23.10<stdlib.h>: General utilities 192
23.10.1 Detailed Description 193
23.10.2 Define Documentation 193
23.10.3 Typedef Documentation 194
23.10.4 Function Documentation 194
23.10.5 Variable Documentation 202
23.11<string.h>: Strings oo oo oo 203
23.11.1 Detailed Description 204
23.11.2 Define Documentation 204
23.11.3 Function Documentation 204
23.12<time.h>: Timeo 216
23.12.1 Detailed Description 217
23.12.2 Define Documentation 218
23.12.3 Typedef Documentation 219
23.12.4 Enumeration Type Documentation 219
23.12.5 Function Documentation 220
23.13 <avr/boot.h>: Bootloader Support Utilities 225
23.13.1 Detailed Description 225
23.13.2 Define Documentation 227
23.14<avr/cpufunc.h>: Special AVR CPU functions 231
23.14.1 Detailed Description 232
23.14.2 Define Documentation 232
23.14.3 Function Documentation 232
23.15<avr/eeprom.h>: EEPROM handling 232
23.15.1 Detailed Description 233
23.15.2 Define Documentation 234
23.15.3 Function Documentation 235
23.16<avr/fuse.h>: Fuse Support 237
23.17<avr/interrupt.h>: Interrupts L. 240
23.17.1 Detailed Description 240
23.17.2 Define Documentation 257
23.18<avr/io.h>: AVR device-specific IO definitions 260

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS viii

23.18.1 Detailed Description 260
23.18.2 Define Documentation 261
23.19<avr/lock.h>: Lockbit Support 261
23.20<avr/pgmspace.h>: Program Space Utilities 264
23.20.1 Detailed Description 266
23.20.2 Define Documentation 266
23.20.3 Typedef Documentation 270
23.20.4 Function Documentation 274
23.21 <avr/power.h>: Power Reduction Management 288
23.21.1 Detailed Description 288
23.21.2 Function Documentation 291
23.22 Additional notes from <avr/sfr_defsh> 292
23.23 <avr/sfr_defs.h>: Special function registers 293
23.23.1 Detailed Description 293
23.23.2 Define Documentation 294
23.24 <avr/signature.h>: Signature Support 295
23.25 <avr/sleep.h>: Power Management and Sleep Modes 296
23.25.1 Detailed Description 296
23.25.2 Function Documentation 297
23.26 <avr/version.h>: avr-libc version macros 298
23.26.1 Detailed Description 298
23.26.2 Define Documentation 299
23.27<avr/wdt.h>: Watchdog timer handling 299
23.27.1 Detailed Description 300
23.27.2 Define Documentation 301
23.27.3 Function Documentation 303

23.28 <util/atomic.h> Atomically and Non-Atomically Executed Code Blocks303

23.28.1 Detailed Description 303
23.28.2 Define Documentation 305
23.29<util/crc16.h>: CRC Computations 306
23.29.1 Detailed Description 306
23.29.2 Function Documentation 307
23.30<util/delay.h>: Convenience functions for busy-wait delay loops . . . 310
23.30.1 Detailed Description 310

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS ix

23.30.2 Define Documentation 311
23.30.3 Function Documentation 311
23.31 <util/delay_basic.h>: Basic busy-wait delay loops 313
23.31.1 Detailed Description 313
23.31.2 Function Documentation 313
23.32 <util/parity.h>: Parity bit generation. 314
23.32.1 Detailed Description, 314
23.32.2 Define Documentation 314
23.33 <util/setbaud.h>: Helper macros for baud rate calculations 314
23.33.1 Detailed Description 315
23.33.2 Define Documentation 316
23.34 <util/twi.h>: TWI bit mask definitions 317
23.34.1 Detailed Description 318
23.34.2 Define Documentation 318
23.35 <compat/deprecated.h>: Deprecated items 321
23.35.1 Detailed Description 322
23.35.2 Define Documentation 322
23.35.3 Function Documentation 324
23.36 <compat/ina90.h>: Compatibility with JAR EWB3.x 324
23.37Demo projects 325
23.37.1 Detailed Description, 325
23.38Combining C and assembly source files 326
2338 1 Hardwaresetup 326
23.38.2 A code walkthrough 327
23383 Thesourcecode 329
23.39A simple project 329
23.39.1The Project 329
23.39.2The SourceCode, 331
23.39.3 Compiling and Linking 333
23.39.4 Examining the ObjectFile 333
23395LinkerMapFiles L 338
23.39.6 Generating Intel Hex Files 340
23.39.7 Letting Make Build the Project 341
23.39.8 Reference to the sourcecode 343

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS X

23.40A more sophisticated project 343
2340.1 Hardware setup oo 344
23.40.2 Functional overview 347
23.40.3 A code walkthrough L. .. 347
23.404Thesourcecode 350

23.41Using the standard IO facilities 350
23411 Hardwaresetup i 350
23.41.2 Functional overview 352
23.41.3 A code walkthrough 352
23.414Thesourcecode, 357

23.42Example using the two-wire interface (TWI) 357
23.42.1 Introductioninto TWI 358
23.42.2 The TWI example project 358
23.423The SourceCode 358

24 Data Structure Documentation 362

24.1 div_t Struct Reference 362
24.1.1 Detailed Description 362
24.1.2 Field Documentation 362

24.2 1div_t Struct Reference 363
24.2.1 Detailed Description L. 363
24.2.2 Field Documentation 363

243 tm StructReference Lo 363
24.3.1 Detailed Description 363
24.3.2 Field Documentation 364

24.4 week_date Struct Reference 365
24.4.1 Detailed Description L. .. 365
24.42 Field Documentation 365

25 File Documentation 365

25.1 assert.h File Reference 365
25.1.1 Detailed Description 366

25.2 atoi.S FileReference 366
25.2.1 Detailed Description 366

253 atol.SFileReference, 366

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

CONTENTS xi
25.3.1 Detailed Description 366

25.4 atomic.h FileReference, 366
25.4.1 Detailed Description 366

25.5 boothFile Reference 366
25.5.1 Detailed Description, 367

25.6 cpufunc.h File Reference 367
25.6.1 Detailed Description 367

25.7 crcl6.h File Reference 367
25.7.1 Detailed Description 367

25.8 ctype.h File Reference 367
25.8.1 Detailed Description 368

25.9 delay.h File Reference 368
25.9.1 Detailed Description 368
25.10delay_basic.h File Reference 368
25.10.1 Detailed Description, 368
25.11errno.h File Reference 368
25.11.1 Detailed Description 369
25.12fdevopen.c File Reference 369
25.12.1 Detailed Description 369
25.13fuse.h File Reference o oL, 369
25.13.1 Detailed Description 369
25.14interrupt.h File Reference 369
25.14.1 Detailed Description 370
25.15inttypes.h File Reference 370
25.15.1 Detailed Description 372
25.16io.h File Reference 372
25.16.1 Detailed Description 372
25.17lock.h File Reference 372
25.17.1 Detailed Description 372
25.18math.h File Reference 372
25.18.1 Detailed Description 375
25.19parity.h File Reference 375
25.19.1 Detailed Description 375
25.20pgmspace.h File Reference 375

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1 AVR Libc 1

25.20.1 Detailed Description 377
25.21powerh File Reference 377
25.21.1 Detailed Description 377
25.21.2 Define Documentation 377
25.22setbaud.h File Reference 378
25.22.1 Detailed Descriptiono 378
25.23setjmp.h File Reference 378
25.23.1 Detailed Description 378
25.24signature.h File Reference 378
25.24.1 Detailed Description 378
25.25sleep.h File Reference 378
25.25.1 Detailed Description 378
25.26stdint.h File Reference 378
25.26.1 Detailed Description 381
25.27stdio.h File Reference 381
25.27.1 Detailed Description 383
25.28stdlib.h File Reference, 383
25.28.1 Detailed Description 384
25.29string.h File Reference, 384
25.29.1 Detailed Description 385
25.30time.h File Reference 385
25.30.1 Detailed Description 387
2531twi.hFileReference 0oL 387
25.31.1 Detailed Description 388
25.32wdth File Reference 388
25.32.1 Detailed Description 388
1 AVR Libc

1.1 Introduction

The latest version of this document is always available from
http://savannah.nongnu.org/projects/avr-libc/

The AVR Libc package provides a subset of the standard C library for Atmel AVR
8-bit RISC microcontrollers. In addition, the library provides the basic

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/
http://www.atmel.com/products/AVR/
http://www.atmel.com/products/AVR/

1.2 General information about this library 2

startup code needed by most applications.

There is a wealth of information in this document which goes beyond simply describ-
ing the interfaces and routines provided by the library. We hope that this document
provides enough information to get a new AVR developer up to speed quickly using
the freely available development tools: binutils, gcc avr-libc and many others.

If you find yourself stuck on a problem which this document doesn’t quite address, you
may wish to post a message to the avr-gcc mailing list. Most of the developers of the
AVR binutils and gcc ports in addition to the devleopers of avr-libc subscribe to the
list, so you will usually be able to get your problem resolved. You can subscribe to the
list at http://lists.nongnu.org/mailman/listinfo/avr—-gcc—-1list
. Before posting to the list, you might want to try reading the Frequently Asked Ques-
tions chapter of this document.

Note

If you think you’ve found a bug, or have a suggestion for an improvement, ei-
ther in this documentation or in the library itself, please use the bug tracker at
https://savannah.nongnu.org/bugs/?group=avr-1libc to ensure
the issue won’t be forgotten.

1.2 General information about this library

In general, it has been the goal to stick as best as possible to established standards
while implementing this library. Commonly, this refers to the C library as described by
the ANSI X3.159-1989 and ISO/IEC 9899:1990 ("ANSI-C") standard, as well as parts
of their successor ISO/IEC 9899:1999 ("C99"). Some additions have been inspired by
other standards like IEEE Std 1003.1-1988 ("POSIX.1"), while other extensions are
purely AVR-specific (like the entire program-space string interface).

Unless otherwise noted, functions of this library are not guaranteed to be reentrant. In
particular, any functions that store local state are known to be non-reentrant, as well
as functions that manipulate IO registers like the EEPROM access routines. If these
functions are used within both standard and interrupt contexts undefined behaviour will
result. See the FAQ for a more detailed discussion.

1.3 Supported Devices
The following is a list of AVR devices currently supported by the library. Note that
actual support for some newer devices depends on the ability of the compiler/assembler

to support these devices at library compile-time.

megaAVR Devices:

* atmegalO3

* atmegal28

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

http://lists.nongnu.org/mailman/listinfo/avr-gcc-list
https://savannah.nongnu.org/bugs/?group=avr-libc

1.3 Supported Devices

e atmegal28a
e atmegal280
e atmegal281
* atmegal284
* atmegal284p
e atmegal6

e atmegal61

e atmegal62

e atmegal63

* atmegal64a
* atmegal64p
* atmegal64pa
* atmegal65

» atmegal65a
* atmegal65p
* atmegal65pa
* atmegal68

* atmegal68a
* atmegal 68p
* atmegal68pa
* atmegal 68pb
* atmegal6a

* atmega2560
* atmega2561
* atmega32

e atmega32a

e atmega323

* atmega324a
e atmega324p
e atmega324pa

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.3 Supported Devices

e atmega325

e atmega325a
e atmega325p
* atmega325pa
* atmega3250
* atmega3250a
* atmega3250p
* atmega3250pa
* atmega328

* atmega328p
* atmega48

* atmega48a

* atmega48pa
* atmega48pb
* atmega48p

* atmega64

* atmega64a

* atmega640

* atmega644

* atmega644a
e atmega644p
* atmega644pa
* atmega645

e atmega645a
* atmega645p
* atmega6450
* atmega6450a
* atmega6450p
* atmega8

* atmega8a

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.3 Supported Devices

* atmega88

* atmega88a
e atmega88p
* atmega88pa
* atmega88pb
e atmega8515
e atmega8535

tinyAVR Devices:

* attiny4

* attiny5

* attiny10

e attinyl1 [1]
e attiny12 [1]
* attiny13

e attinyl3a

e attinyl5 [1]
* attiny20

* attiny22

* attiny24

* attiny24a

* attiny25

* attiny26

* attiny261

* attiny261a
* attiny28 [1]
e attiny2313
e attiny2313a
* attiny40

* attiny4313

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.3 Supported Devices

e attiny43u
* attiny44

* attiny44a
* attiny441
* attiny45

* attiny461
e attiny46la
* attiny48

* attiny828
* attiny84

* attiny84a
* attiny841
* attiny85

* attiny861
* attiny861a
* attiny87

* attiny88

* attiny1634

Automotive AVR Devices:

e atmegal6bml
* atmega32cl
e atmega32ml
* atmegab4cl
e atmega64ml
* attiny167

* ata5505

* ata5272

e ata5702m322
* ata5782

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.3 Supported Devices

* ata5790
* ata5790n
e ata5791
* ata5795
* ata5831
e ata6612c
* ata6613c
* ata6614q
* ata6616¢
* ata6617c
* ata664251
* ata8210
* ata8510

CAN AVR Devices:

¢ at90can32
¢ at90can64
e at90can128

LCD AVR Devices:

e atmegal69

* atmegal69a
* atmegal69p
» atmegal69pa
e atmega329

* atmega329a
e atmega329p
* atmega329pa
* atmega3290

* atmega3290a

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.3 Supported Devices

* atmega3290p
* atmega3290pa
e atmega649

* atmega649a

* atmega6490

* atmega6490a
* atmega6490p
* atmega649p

Lighting AVR Devices:

e at90pwml

e at90pwm?2

e at90pwm?2b
e at90pwm?216
e at90pwm3

e at90pwm3b
* at90pwm316
e at90pwm161

* at90pwm§1

Smart Battery AVR Devices:

* atmega8hva

* atmegal6hva

* atmegal6hva2

* atmegal6hvb

* atmegal6hvbrevb
* atmega32hvb

* atmega32hvbrevb

* atmega64hve

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.3 Supported Devices

e atmega64hve2

* atmega406

USB AVR Devices:

* at90usb82

e at90usb162
* at90usb646
* at90usb647
* at90usb1286
e at90usb1287
* atmega8u2
e atmegal6u2
* atmegal6u4
e atmega32u2
* atmega32u4

* atmega32u6

XMEGA Devices:

* atxmega8e5

* atxmegal6ad
* atxmegal6adu
* atxmegal6cd
* atxmegal 6d4
* atxmegal 6e5
* atxmega32a4
e atxmega32adu
* atxmega32c3
* atxmega32c4

* atxmega32d3

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.3 Supported Devices

e atxmega32d4

* atxmega32e5

e atxmega64al

e atxmega64alu
* atxmega64a3

* atxmega64a3u
* atxmega64adu
 atxmega64bl

* atxmega64b3

* atxmega64c3

* atxmega64d3

* atxmega64d4

* atxmegal28al
» atxmegal28alu
* atxmegal28a3
* atxmegal28a3u
* atxmegal28adu
* atxmegal28bl
* atxmegal28b3
e atxmegal28c3
e atxmegal28d3
* atxmegal28d4
e atxmegal92a3
e atxmegal92a3u
e atxmegal92c3
e atxmegal92d3
e atxmega256a3
e atxmega256a3u
e atxmega256a3b
* atxmega256a3bu

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.3 Supported Devices

 atxmega256c3
* atxmega256d3
* atxmega384c3

* atxmega384d3

Wireless AVR devices:

e atmega644rfr2
* atmega64rfr2

* atmegal28rfal
e atmegal284rfr2
* atmegal28rfr2
e atmega2564rfr2

e atmega256rfr2

Miscellaneous Devices:

* at94K [2]

e at76c711 [3]
* at43usb320
* at43usb355
* at86rf401

* at90scr100
* ata6285

* ata6286

* ata6289

m3000 [4]

Classic AVR Devices:

e at90s1200 [1]
e at90s2313

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.4 avr-libc License 12

* at90s2323
* at90s2333
* at90s2343
* at90s4414
* at90s4433
* at90s4434
* at90s8515
* at90c8534
* at90s8535

Note

[1] Assembly only. There is no direct support for these devices to be programmed
in C since they do not have a RAM based stack. Still, it could be possible to
program them in C, see the FAQ for an option.

Note

[2] The at94K devices are a combination of FPGA and AVR microcontroller.
[TRoth-2002/11/12: Not sure of the level of support for these. More information
would be welcomed.]

Note
[3] The at76c¢711 is a USB to fast serial interface bridge chip using an AVR core.

Note

[4] The m3000 is a motor controller AVR ASIC from Intelligent Motion Systems
(IMS) / Schneider Electric.

1.4 avr-libc License

avr-libc can be freely used and redistributed, provided the following license conditions
are met.

Portions of avr-libc are Copyright (c) 1999-2016
Werner Boellmann,

Dean Camera,

Pieter Conradie,

Brian Dean,

Keith Gudger,

Wouter van Gulik,

Bjoern Haase,

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

1.4 avr-libc License 13

Steinar Haugen,
Peter Jansen,
Reinhard Jessich,
Magnus Johansson,
Harald Kipp,

Carlos Lamas,

Cliff Lawson,

Artur Lipowski,
Marek Michalkiewicz,
Todd C. Miller,

Rich Neswold,

Colin O’'Flynn,

Bob Paddock,

Andrey Pashchenko,
Reiner Patommel,
Florin-Viorel Petrov,
Alexander Popov,
Michael Rickman,
Theodore A. Roth,
Juergen Schilling,
Philip Soeberg,
Anatoly Sokolov,
Nils Kristian Strom,
Michael Stumpf,
Stefan Swanepoel,
Helmut Wallner,

Eric B. Weddington,
Joerg Wunsch,

Dmitry Xmelkov,
Atmel Corporation,
egnite Software GmbH,
The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

2 Toolchain Overview 14

2 Toolchain Overview

2.1 Introduction

Welcome to the open source software development toolset for the Atmel AVR!

There is not a single tool that provides everything needed to develop software for the
AVR. It takes many tools working together. Collectively, the group of tools are called a
toolset, or commonly a toolchain, as the tools are chained together to produce the final
executable application for the AVR microcontroller.

The following sections provide an overview of all of these tools. You may be used
to cross-compilers that provide everything with a GUI front-end, and not know what
goes on "underneath the hood". You may be coming from a desktop or server computer
background and not used to embedded systems. Or you may be just learning about the
most common software development toolchain available on Unix and Linux systems.
Hopefully the following overview will be helpful in putting everything in perspective.

2.2 FSF and GNU

According to its website, "the Free Software Foundation (FSF), established in 19835, is
dedicated to promoting computer users’ rights to use, study, copy, modify, and redis-
tribute computer programs. The FSF promotes the development and use of free soft-
ware, particularly the GNU operating system, used widely in its GNU/Linux variant."
The FSF remains the primary sponsor of the GNU project.

The GNU Project was launched in 1984 to develop a complete Unix-like operating
system which is free software: the GNU system. GNU is a recursive acronym for
»GNU’s Not Unix; it is pronounced guh-noo, approximately like canoe.

One of the main projects of the GNU system is the GNU Compiler Collection, or GCC,
and its sister project, GNU Binutils. These two open source projects provide a foun-
dation for a software development toolchain. Note that these projects were designed to
originally run on Unix-like systems.

2.3 GCC

GCC stands for GNU Compiler Collection. GCC is highly flexible compiler system. It
has different compiler front-ends for different languages. It has many back-ends that
generate assembly code for many different processors and host operating systems. All
share a common "middle-end", containing the generic parts of the compiler, including
a lot of optimizations.

In GCC, a host system is the system (processor/OS) that the compiler runs on. A
target system is the system that the compiler compiles code for. And, a build system
is the system that the compiler is built (from source code) on. If a compiler has the
same system for host and for rarget, it is known as a native compiler. If a compiler
has different systems for host and target, it is known as a cross-compiler. (And if all
three, build, host, and target systems are different, it is known as a Canadian cross
compiler, but we won’t discuss that here.) When GCC is built to execute on a host

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

2.4 GNU Binutils 15

system such as FreeBSD, Linux, or Windows, and it is built to generate code for the
AVR microcontroller farget, then it is a cross compiler, and this version of GCC is
commonly known as "AVR GCC". In documentation, or discussion, AVR GCC is
used when referring to GCC targeting specifically the AVR, or something that is AVR
specific about GCC. The term "GCC" is usually used to refer to something generic
about GCC, or about GCC as a whole.

GCC is different from most other compilers. GCC focuses on translating a high-level
language to the target assembly only. AVR GCC has three available compilers for the
AVR: C language, C++, and Ada. The compiler itself does not assemble or link the
final code.

GCC is also known as a "driver" program, in that it knows about, and drives other
programs seamlessly to create the final output. The assembler, and the linker are part
of another open source project called GNU Binutils. GCC knows how to drive the
GNU assembler (gas) to assemble the output of the compiler. GCC knows how to drive
the GNU linker (1d) to link all of the object modules into a final executable.

The two projects, GCC and Binutils, are very much interrelated and many of the same
volunteers work on both open source projects.

When GCC is built for the AVR target, the actual program names are prefixed with
"avr-". So the actual executable name for AVR GCC is: avr-gcc. The name "avr-gcc"
is used in documentation and discussion when referring to the program itself and not
just the whole AVR GCC system.

See the GCC Web Site and GCC User Manual for more information about GCC.

2.4 GNU Binutils

The name GNU Binutils stands for "Binary Utilities". It contains the GNU assembler
(gas), and the GNU linker (ld), but also contains many other utilities that work with
binary files that are created as part of the software development toolchain.

Again, when these tools are built for the AVR target, the actual program names are
prefixed with "avr-". For example, the assembler program name, for a native assembler
is "as" (even though in documentation the GNU assembler is commonly referred to as
"gas"). But when built for an AVR target, it becomes "avr-as". Below is a list of the
programs that are included in Binutils:

avr-as

The Assembler.
avr-ld

The Linker.
avr-ar

Create, modify, and extract from libraries (archives).

avr-ranlib

Generate index to library (archive) contents.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

2.5 avr-libc

16

avr-objcopy

Copy and translate object files to different formats.

avr-objdump

Display information from object files including disassembly.

avr-size

List section sizes and total size.
avr-nm

List symbols from object files.
avr-strings

List printable strings from files.

avr-strip

Discard symbols from files.

avr-readelf

Display the contents of ELF format files.

avr-addr2line

Convert addresses to file and line.

avr-c++filt

Filter to demangle encoded C++ symbols.

2.5 avr-libc

GCC and Binutils provides a lot of the tools to develop software, but there is one critical

component that they do not provide: a Standard C Library.

There are different open source projects that provide a Standard C Library depending
upon your system time, whether for a native compiler (GNU Libc), for some other
embedded system (newlib), or for some versions of Linux (uCLibc). The open source

AVR toolchain has its own Standard C Library project: avr-libc.

AVR-Libc provides many of the same functions found in a regular Standard C Library
and many additional library functions that is specific to an AVR. Some of the Standard
C Library functions that are commonly used on a PC environment have limitations or
additional issues that a user needs to be aware of when used on an embedded system.

AVR-Libc also contains the most documentation about the whole AVR toolchain.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

2.6 Building Software 17

2.6 Building Software

Even though GCC, Binutils, and avr-libc are the core projects that are used to build
software for the AVR, there is another piece of software that ties it all together: Make.
GNU Make is a program that makes things, and mainly software. Make interprets and
executes a Makefile that is written for a project. A Makefile contains dependency rules,
showing which output files are dependent upon which input files, and instructions on
how to build output files from input files.

Some distributions of the toolchains, and other AVR tools such as MFile, contain a
Makefile template written for the AVR toolchain and AVR applications that you can
copy and modify for your application.

See the GNU Make User Manual for more information.

2.7 AVRDUDE

After creating your software, you’ll want to program your device. You can do this by
using the program AVRDUDE which can interface with various hardware devices to
program your processor.

AVRDUDE is a very flexible package. All the information about AVR processors
and various hardware programmers is stored in a text database. This database can be
modified by any user to add new hardware or to add an AVR processor if it is not
already listed.

2.8 GDB /Insight / DDD

The GNU Debugger (GDB) is a command-line debugger that can be used with the rest
of the AVR toolchain. Insight is GDB plus a GUI written in Tcl/Tk. Both GDB and
Insight are configured for the AVR and the main executables are prefixed with the target
name: avr-gdb, and avr-insight. There is also a "text mode" GUI for GDB: avr-gdbtui.

DDD (Data Display Debugger) is another popular GUI front end to GDB, available on
Unix and Linux systems.

2.9 AVaRICE

AVaRICE is a back-end program to AVR GDB and interfaces to the Atmel JTAG In-
Circuit Emulator (ICE), to provide emulation capabilities.

2.10 SimulAVR

SimulAVR is an AVR simulator used as a back-end with AVR GDB.

2.11 Utilities

There are also other optional utilities available that may be useful to add to your toolset.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

2.12 Toolchain Distributions (Distros) 18

SRecord is a collection of powerful tools for manipulating EPROM load files. It
reads and writes numerous EPROM file formats, and can perform many different ma-
nipulations.

MFile is a simple Makefile generator is meant as an aid to quickly customize a Make-
file to use for your AVR application.

2.12 Toolchain Distributions (Distros)

All of the various open source projects that comprise the entire toolchain are normally
distributed as source code. It is left up to the user to build the tool application from its
source code. This can be a very daunting task to any potential user of these tools.

Luckily there are people who help out in this area. Volunteers take the time to build the
application from source code on particular host platforms and sometimes packaging
the tools for convenient installation by the end user. These packages contain the binary
executables of the tools, pre-made and ready to use. These packages are known as
"distributions" of the AVR toolchain, or by a more shortened name, "distros".

AVR toolchain distros are available on FreeBSD, Windows, Mac OS X, and certain
flavors of Linux.

2.13 Open Source

All of these tools, from the original source code in the multitude of projects, to the
various distros, are put together by many, many volunteers. All of these projects could
always use more help from other people who are willing to volunteer some of their time.
There are many different ways to help, for people with varying skill levels, abilities,
and available time.

You can help to answer questions in mailing lists such as the avr-gcc-list, or on forums
at the AVR Freaks website. This helps many people new to the open source AVR tools.

If you think you found a bug in any of the tools, it is always a big help to submit a good
bug report to the proper project. A good bug report always helps other volunteers to
analyze the problem and to get it fixed for future versions of the software.

You can also help to fix bugs in various software projects, or to add desirable new
features.

Volunteers are always welcome! :-)

3 Memory Areas and Using malloc()

3.1 Introduction

Many of the devices that are possible targets of avr-libc have a minimal amount of
RAM. The smallest parts supported by the C environment come with 128 bytes of
RAM. This needs to be shared between initialized and uninitialized variables (sections

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

3.1 Introduction 19

.data and .bss), the dynamic memory allocator, and the stack that is used for calling
subroutines and storing local (automatic) variables.

Also, unlike larger architectures, there is no hardware-supported memory management
which could help in separating the mentioned RAM regions from being overwritten by
each other.

The standard RAM layout is to place .data variables first, from the beginning of the
internal RAM, followed by .bss. The stack is started from the top of internal RAM,
growing downwards. The so-called "heap" available for the dynamic memory allocator
will be placed beyond the end of .bss. Thus, there’s no risk that dynamic memory will
ever collide with the RAM variables (unless there were bugs in the implementation of
the allocator). There is still a risk that the heap and stack could collide if there are large
requirements for either dynamic memory or stack space. The former can even happen
if the allocations aren’t all that large but dynamic memory allocations get fragmented
over time such that new requests don’t quite fit into the "holes" of previously freed
regions. Large stack space requirements can arise in a C function containing large
and/or numerous local variables or when recursively calling function.

Note

The pictures shown in this document represent typical situations where the RAM
locations refer to an ATmegal28. The memory addresses used are not displayed
in a linear scale.

0x0100
Ox10FF
0x1100

OXFFFF

on-board RAM

external RAM

.data
variables

& SP L RAMEND

*(__brkval) (<= *SP - *(__malloc_margin))

L *(__malloc_heap_start) == __heap_start
__bss_end

__data_end == __bss_start

L—————————————— data start

Figure 1: RAM map of a device with internal RAM

On a simple device like a microcontroller it is a challenge to implement a dynamic
memory allocator that is simple enough so the code size requirements will remain low,
yet powerful enough to avoid unnecessary memory fragmentation and to get it all done
with reasonably few CPU cycles. Microcontrollers are often low on space and also run
at much lower speeds than the typical PC these days.

The memory allocator implemented in avr-libc tries to cope with all of these con-
straints, and offers some tuning options that can be used if there are more resources
available than in the default configuration.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

3.2 Internal vs. external RAM 20

3.2 Internal vs. external RAM

Obviously, the constraints are much harder to satisfy in the default configuration where
only internal RAM is available. Extreme care must be taken to avoid a stack-heap
collision, both by making sure functions aren’t nesting too deeply, and don’t require
too much stack space for local variables, as well as by being cautious with allocating
too much dynamic memory.

If external RAM is available, it is strongly recommended to move the heap into the ex-
ternal RAM, regardless of whether or not the variables from the .data and .bss sections
are also going to be located there. The stack should always be kept in internal RAM.
Some devices even require this, and in general, internal RAM can be accessed faster
since no extra wait states are required. When using dynamic memory allocation and
stack and heap are separated in distinct memory areas, this is the safest way to avoid a
stack-heap collision.

3.3 Tunables for malloc()

There are a number of variables that can be tuned to adapt the behavior of malloc()
to the expected requirements and constraints of the application. Any changes to these
tunables should be made before the very first call to malloc(). Note that some library
functions might also use dynamic memory (notably those from the <stdio.h>: Stan-
dard IO facilities), so make sure the changes will be done early enough in the startup
sequence.

The variables __malloc_heap_start and _ malloc_heap_end can be used
to restrict the malloc() function to a certain memory region. These variables are stati-
cally initialized to point to __heap_start and __heap_end, respectively, where
__heap_start is filled in by the linker to point just beyond .bss, and __heap_end
is set to 0 which makes malloc() assume the heap is below the stack.

If the heap is going to be moved to external RAM, __malloc_heap_end must be
adjusted accordingly. This can either be done at run-time, by writing directly to this
variable, or it can be done automatically at link-time, by adjusting the value of the
symbol __heap_end.

The following example shows a linker command to relocate the entire .data and .bss
segments, and the heap to location 0x1100 in external RAM. The heap will extend up
to address Oxfftf.

avr-gcc ... -Wl,--section-start, .data=0x801100,--defsym=__heap_end=0x80ffff ...

Note

See explanation for offset 0x800000. See the chapter about using gcc for the -W1
options.

The 1d (linker) user manual states that using -Tdata=<x>> is equivalent to using
--section-start,.data=<x>. However, you have to use --section-start as above be-
cause the GCC frontend also sets the -Tdata option for all MCU types where the
SRAM doesn’t start at 0x800060. Thus, the linker is being faced with two -Tdata
options. Sarting with binutils 2.16, the linker changed the preference, and picks
the "wrong" option in this situation.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

3.3 Tunables for malloc() 21

0x0100
0x10FF
0x1100

OXFFFF

on-board RAM external RAM

.data
variables

E *(__malloc_heap_end) == __heap_end
RAMEND *(__brkval)
*(__malloc_heap_start) == __heap_start
__bss_end
__data_end == __bss_start
data start

Figure 2: Internal RAM: stack only, external RAM: variables and heap

If dynamic memory should be placed in external RAM, while keeping the variables in
internal RAM, something like the following could be used. Note that for demonstration
purposes, the assignment of the various regions has not been made adjacent in this
example, so there are "holes" below and above the heap in external RAM that remain
completely unaccessible by regular variables or dynamic memory allocations (shown
in light bisque color in the picture below).

avr-gcc ... —-Wl,--defsym=__heap_start=0x802000, ——defsym=__heap_end=0x803fff ...

external RAM

8 ts 8 i i
& on-board RAM $% 9 g %
.data
variables l l
SP —f LL *(__malloc_heap_end) == __heap_end
RAMEND __brkval)
__bss_end __malloc_heap_start) == __heap_start
__data_end == __bss_start
data start

Figure 3: Internal RAM: variables and stack, external RAM: heap

If __malloc_heap_end is 0, the allocator attempts to detect the bottom of stack
in order to prevent a stack-heap collision when extending the actual size of the heap
to gain more space for dynamic memory. It will not try to go beyond the current
stack limit, decreased by ___malloc_margin bytes. Thus, all possible stack frames
of interrupt routines that could interrupt the current function, plus all further nested
function calls must not require more stack space, or they will risk colliding with the
data segment.

The default value of __malloc_margin is set to 32.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

3.4 Implementation details 22

3.4 Implementation details

Dynamic memory allocation requests will be returned with a two-byte header
prepended that records the size of the allocation. This is later used by free(). The
returned address points just beyond that header. Thus, if the application accidentally
writes before the returned memory region, the internal consistency of the memory al-
locator is compromised.

The implementation maintains a simple freelist that accounts for memory blocks that
have been returned in previous calls to free(). Note that all of this memory is considered
to be successfully added to the heap already, so no further checks against stack-heap
collisions are done when recycling memory from the freelist.

The freelist itself is not maintained as a separate data structure, but rather by modifying
the contents of the freed memory to contain pointers chaining the pieces together. That
way, no additional memory is reqired to maintain this list except for a variable that
keeps track of the lowest memory segment available for reallocation. Since both, a
chain pointer and the size of the chunk need to be recorded in each chunk, the minimum
chunk size on the freelist is four bytes.

When allocating memory, first the freelist is walked to see if it could satisfy the request.
If there’s a chunk available on the freelist that will fit the request exactly, it will be
taken, disconnected from the freelist, and returned to the caller. If no exact match could
be found, the closest match that would just satisfy the request will be used. The chunk
will normally be split up into one to be returned to the caller, and another (smaller)
one that will remain on the freelist. In case this chunk was only up to two bytes larger
than the request, the request will simply be altered internally to also account for these
additional bytes since no separate freelist entry could be split off in that case.

If nothing could be found on the freelist, heap extension is attempted. This is where
__malloc_margin will be considered if the heap is operating below the stack, or
where __malloc_heap_end will be verified otherwise.

If the remaining memory is insufficient to satisfy the request, NULL will eventually be
returned to the caller.

When calling free(), a new freelist entry will be prepared. An attempt is then made to
aggregate the new entry with possible adjacent entries, yielding a single larger entry
available for further allocations. That way, the potential for heap fragmentation is
hopefully reduced. When deallocating the topmost chunk of memory, the size of the
heap is reduced.

A call to realloc() first determines whether the operation is about to grow or shrink the
current allocation. When shrinking, the case is easy: the existing chunk is split, and the
tail of the region that is no longer to be used is passed to the standard free() function for
insertion into the freelist. Checks are first made whether the tail chunk is large enough
to hold a chunk of its own at all, otherwise realloc() will simply do nothing, and return
the original region.

When growing the region, it is first checked whether the existing allocation can be ex-
tended in-place. If so, this is done, and the original pointer is returned without copying
any data contents. As a side-effect, this check will also record the size of the largest
chunk on the freelist.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

4 Memory Sections 23

If the region cannot be extended in-place, but the old chunk is at the top of heap, and
the above freelist walk did not reveal a large enough chunk on the freelist to satisfy
the new request, an attempt is made to quickly extend this topmost chunk (and thus
the heap), so no need arises to copy over the existing data. If there’s no more space
available in the heap (same check is done as in malloc()), the entire request will fail.

Otherwise, malloc() will be called with the new request size, the existing data will be
copied over, and free() will be called on the old region.

4 Memory Sections

Remarks

Need to list all the sections which are available to the avr.

Weak Bindings

FIXME: need to discuss the .weak directive.

The following describes the various sections available.

4.1 The .text Section

The .text section contains the actual machine instructions which make up your program.
This section is further subdivided by the .initN and .finiN sections dicussed below.

Note

The avr-size program (part of binutils), coming from a Unix background,
doesn’t account for the .data initialization space added to the .text section, so in
order to know how much flash the final program will consume, one needs to add
the values for both, .text and .data (but not .bss), while the amount of pre-allocated
SRAM is the sum of .data and .bss.

4.2 The .data Section

This section contains static data which was defined in your code. Things like the fol-
lowing would end up in .data:

char err_str[] = "Your program has died a horrible death!";

struct point pt = { 1, 1 };

It is possible to tell the linker the SRAM address of the beginning of the .data section.
This is accomplished by adding -W1, -Tdata, addr to the avr-gcc command
used to the link your program. Not that addr must be offset by adding 0x800000
the to real SRAM address so that the linker knows that the address is in the SRAM
memory space. Thus, if you want the .data section to start at 0x1100, pass 0x801100
at the address to the linker. [offset explained]

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

4.3 The .bss Section 24

Note

When usingmalloc () inthe application (which could even happen inside library
calls), additional adjustments are required.

4.3 The .bss Section

Uninitialized global or static variables end up in the .bss section.

4.4 The .eeprom Section

This is where eeprom variables are stored.

4.5 The .noinit Section

This sections is a part of the .bss section. What makes the .noinit section special is that
variables which are defined as such:

int foo __attribute_ _ ((section (".noinit")));

will not be initialized to zero during startup as would normal .bss data.

Only uninitialized variables can be placed in the .noinit section. Thus, the following
code will cause avr—gcc to issue an error:

int bar __ _attribute_ ((section (".noinit"))) = Oxaa;

It is possible to tell the linker explicitly where to place the .noinit section by adding
-W1l, ——section-start=.noinit=0x802000 to the avr—gcc command line
at the linking stage. For example, suppose you wish to place the .noinit section at
SRAM address 0x2000:

$ avr-gcc ... -Wl,--section-start=.noinit=0x802000 ...

Note

Because of the Harvard architecture of the AVR devices, you must manually add
0x800000 to the address you pass to the linker as the start of the section. Oth-
erwise, the linker thinks you want to put the .noinit section into the .text section
instead of .data/.bss and will complain.

Alternatively, you can write your own linker script to automate this. [FIXME: need an
example or ref to dox for writing linker scripts.]

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

4.6 The .initN Sections 25

4.6 The .initN Sections

These sections are used to define the startup code from reset up through the start of
main(). These all are subparts of the .text section.

The purpose of these sections is to allow for more specific placement of code within
your program.

Note

Sometimes, it is convenient to think of the .initN and .finiN sections as functions,
but in reality they are just symbolic names which tell the linker where to stick a
chunk of code which is not a function. Notice that the examples for asm and C can
not be called as functions and should not be jumped into.

The .initN sections are executed in order from O to 9.

init0:

Weakly bound to __init(). If user defines __init(), it will be jumped into immedi-
ately after a reset.

Ainitl:
Unused. User definable.

Ainit2:
In C programs, weakly bound to initialize the stack, and to clear __zero_reg__
(rD).

init3:

Unused. User definable.

.init4:

For devices with > 64 KB of ROM, .init4 defines the code which takes care of copying
the contents of .data from the flash to SRAM. For all other devices, this code as well
as the code to zero out the .bss section is loaded from libgcc.a.
AinitS:

Unused. User definable.
.init6:

Unused for C programs, but used for constructors in C++ programs.

init7:

Unused. User definable.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

4.7 The .finiN Sections 26

.init8:
Unused. User definable.
.init9:

Jumps into main().

4.7 The .finiN Sections

These sections are used to define the exit code executed after return from main() or a
call to exit(). These all are subparts of the .text section.

The .finiN sections are executed in descending order from 9 to 0.

finit9:

Unused. User definable. This is effectively where _exit() starts.

fini8:
Unused. User definable.

fini7:
Unused. User definable.

fini6:

Unused for C programs, but used for destructors in C++ programs.

fini5:
Unused. User definable.

fini4:
Unused. User definable.

fini3:
Unused. User definable.

fini2:
Unused. User definable.

finil:
Unused. User definable.

fini0:

Goes into an infinite loop after program termination and completion of any _exit()
code (execution of code in the .fini9 -> finil sections).

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

4.8 The .note.gnu.avr.deviceinfo Section 27

4.8 The .note.gnu.avr.deviceinfo Section

This section contains device specific information picked up from the device
header file and compiler builtin macros. The layout conforms to the stan-
dard ELF note section layout (http://docs.oracle.com/cd/E23824_-
01/html1/819-0690/chapter6-18048.html).

The section contents are laid out as below.

#define __ NOTE_NAME_LEN

4

struct __note_gnu_avr_deviceinfo
{
struct
{
uint32_t namesz; /* = __NOTE_NAME_LEN x*/
uint32_t descsz; /* = size of avr_desc x/
uint32_t type; /* = 1 - no other AVR note types exist =/
char note_name[_ NOTE_NAME_LEN]; /% = "AVR\0" «/

}
note_header;
struct

{

uint32_t flash_start;
uint32_t flash_size;
uint32_t sram_start;

uint32_t sram_size;

uint32_t eeprom_start;
uint32_t eeprom_size;

uint32_t offset_table_size;

uint32_t offset_table[l];

/

+ Offset table containing byte offsets into
string table that immediately follows it.
index 0: Device name byte offset

*/

char str_table [2 +
strlen(__AVR_DEVICE_NAME__)]; /% Standard ELF string table.
index 0 : NULL
index 1 : Device name
index 2 : NULL

}

avr_desc;

bi

*/

4.9 Using Sections in Assembler Code

Example:

#include <avr/io.h>

.section .initl, "ax",@progbits

1di r0, Oxff

out _SFR_IO_ADDR (PORTB),
out _SFR_IO_ADDR (DDRB) ,

Note

The , "ax", @progbits tells the assembler that the section is allocatable ("a"),
executable ("x") and contains data (" @progbits"). For more detailed information

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

http://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-18048.html
http://docs.oracle.com/cd/E23824_01/html/819-0690/chapter6-18048.html

4.10 Using Sections in C Code 28

on the .section directive, see the gas user manual.

4.10 Using Sections in C Code
Example:

#include <avr/io.h>

void my_init_portb (void) __attribute__ ((naked)) \
__attribute__ ((section (".init3")))
__attribute_ ((used));

void

my_init_portb (void)
{
PORTB = Oxff;
DDRB = Oxff;

Note

Section .init3 is used in this example, as this ensures the inernal __zero_reg_-
_ has already been set up. The code generated by the compiler might blindly
rely on __zero_reg__ being really 0. __attribute__ ((used)) tells
the compiler that code must be generated for this function even if it appears that
the function is not referenced - this is necessary to prevent compiler optimizations
(like LTO) from eliminating the function.

S Data in Program Space

5.1 Introduction

So you have some constant data and you’re running out of room to store it? Many
AVRs have limited amount of RAM in which to store data, but may have more Flash
space available. The AVR is a Harvard architecture processor, where Flash is used for
the program, RAM is used for data, and they each have separate address spaces. It is
a challenge to get constant data to be stored in the Program Space, and to retrieve that
data to use it in the AVR application.

The problem is exacerbated by the fact that the C Language was not designed for
Harvard architectures, it was designed for Von Neumann architectures where code and
data exist in the same address space. This means that any compiler for a Harvard
architecture processor, like the AVR, has to use other means to operate with separate
address spaces.

Some compilers use non-standard C language keywords, or they extend the standard
syntax in ways that are non-standard. The AVR toolset takes a different approach.

GCC has a special keyword, __attribute__ that is used to attach different at-
tributes to things such as function declarations, variables, and types. This keyword is
followed by an attribute specification in double parentheses. In AVR GCC, there is a

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

5.2 A Note On const 29

special attribute called progmem. This attribute is use on data declarations, and tells
the compiler to place the data in the Program Memory (Flash).

AVR-Libc provides a simple macro PROGMEM that is defined as the attribute syn-
tax of GCC with the progmem attribute. This macro was created as a convenience
to the end user, as we will see below. The PROGMEM macro is defined in the
<avr/pgmspace.h> system header file.

It is difficult to modify GCC to create new extensions to the C language syntax, so
instead, avr-libc has created macros to retrieve the data from the Program Space. These
macros are also found in the <avr/pgmspace.h> system header file.

5.2 A Note On const

Many users bring up the idea of using C’s keyword const as a means of declaring
data to be in Program Space. Doing this would be an abuse of the intended meaning of
the const keyword.

const is used to tell the compiler that the data is to be "read-only". It is used to help
make it easier for the compiler to make certain transformations, or to help the compiler
check for incorrect usage of those variables.

For example, the const keyword is commonly used in many functions as a modifier on
the parameter type. This tells the compiler that the function will only use the parameter
as read-only and will not modify the contents of the parameter variable.

const was intended for uses such as this, not as a means to identify where the data
should be stored. If it were used as a means to define data storage, then it loses its
correct meaning (changes its semantics) in other situations such as in the function pa-
rameter example.

5.3 Storing and Retrieving Data in the Program Space

Let’s say you have some global data:

unsigned char mydata[l1l][10] =

{
{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09},
{0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11,0x12,0x13},
{0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},
{0x1E, O0x1F, 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27},
{0x28,0x29, 0x2A, 0x2B, 0x2C, 0x2D, O0x2E, O0x2F, 0x30, 0x31},
{0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B},
{0x3C, 0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42,0x43,0x44,0x45},
{0x46,0x47,0x48,0x49, 0x4A,0x4B, 0x4C, 0x4D, 0x4E, 0x4F},
{0x50,0x51,0x52,0x53,0x54, 0x55,0x56,0x57,0x58, 0x59},
{0x5A,0x5B, 0x5C, 0x5D, 0x5E, 0x5F, 0x60,0x61,0x62, 0x63},
{0x64,0x65,0x66,0x67,0x68,0x69, 0x6A,0x6B, 0x6C, 0x6D}

Vi

and later in your code you access this data in a function and store a single byte into a
variable like so:

byte = mydatalil[]j];

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

5.3 Storing and Retrieving Data in the Program Space 30

Now you want to store your data in Program Memory. Use the PROGMEM macro found
in <avr/pgmspace.h> and put it after the declaration of the variable, but before
the initializer, like so:

#include <avr/pgmspace.h>

const unsigned char mydata[11][10] PROGMEM =

{
{0x00, 0x01, 0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09},
{0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,0x11,0x12,0x13},
{0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},
{0x1E, O0x1F, 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27},
{0x28,0x29,0x2A,0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31},
{0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B},
{0x3C, 0x3D, 0x3E, O0x3F, 0x40,0x41,0x42,0x43,0x44,0x45},
{0x46,0x47,0x48,0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, Ox4F},
{0x50,0x51,0x52,0x53,0x54, 0x55,0x56,0x57,0x58,0x59},
{0x5A, 0x5B, 0x5C, 0x5D, O0x5E, Ox5F, 0x60, 0x61, 0x62, 0x63},
{0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C, 0x6D}

bi

That’s it! Now your data is in the Program Space. You can compile, link, and check
the map file to verify that mydata is placed in the correct section.

Now that your data resides in the Program Space, your code to access (read) the data
will no longer work. The code that gets generated will retrieve the data that is located
at the address of the mydata array, plus offsets indexed by the i and j variables.
However, the final address that is calculated where to the retrieve the data points to
the Data Space! Not the Program Space where the data is actually located. It is likely
that you will be retrieving some garbage. The problem is that AVR GCC does not
intrinsically know that the data resides in the Program Space.

The solution is fairly simple. The "rule of thumb" for accessing data stored in the
Program Space is to access the data as you normally would (as if the variable is stored
in Data Space), like so:

byte = mydatal[il[]j];
then take the address of the data:
byte = &(mydatali]l[]]);

then use the appropriate pgm_read_* macro, and the address of your data becomes
the parameter to that macro:

byte = pgm_read_byte (& (mydatali] [J]));

The pgm_read_* macros take an address that points to the Program Space, and re-
trieves the data that is stored at that address. This is why you take the address of the
offset into the array. This address becomes the parameter to the macro so it can gen-
erate the correct code to retrieve the data from the Program Space. There are different
pgm_read_* macros to read different sizes of data at the address given.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

5.4 Storing and Retrieving Strings in the Program Space 31

5.4 Storing and Retrieving Strings in the Program Space

Now that you can successfully store and retrieve simple data from Program Space you
want to store and retrive strings from Program Space. And specifically you want to
store and array of strings to Program Space. So you start off with your array, like so:

char xstring_table[] =

{
"String 1",
"String 2",
"String 3",
"String 4",
"String 5"

Vi

and then you add your PROGMEM macro to the end of the declaration:

char xstring_table[] PROGMEM =
{

"String 1",

"String 2",

"String 3",

"String 4",

"String 5"
i

Right? WRONG!

Unfortunately, with GCC attributes, they affect only the declaration that they are at-
tached to. So in this case, we successfully put the st ring_table variable, the array
itself, in the Program Space. This DOES NOT put the actual strings themselves into
Program Space. At this point, the strings are still in the Data Space, which is probably
not what you want.

In order to put the strings in Program Space, you have to have explicit declarations for
each string, and put each string in Program Space:

const char string_1[] PROGMEM = "String 1";
const char string_2[] PROGMEM = "String 2";
const char string_3[] PROGMEM = "String 3";
const char string_4[] PROGMEM = "String 4";
const char string_5[] PROGMEM = "String 5";

Then use the new symbols in your table, like so:

PGM_P const string_table[] PROGMEM =
{

string_1,

string_2,

string_3,

string_4,

string_5
bi

Now this has the effect of putting string_ table in Program Space, where
string_table is an array of pointers to characters (strings), where each pointer
is a pointer to the Program Space, where each string is also stored.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

5.5 Caveats 32

The PGM_P type above is also a macro that defined as a pointer to a character in the
Program Space.

Retrieving the strings are a different matter. You probably don’t want to pull the string
out of Program Space, byte by byte, using the pgm_read_byte () macro. There are
other functions declared in the <avr/pgmspace.h> header file that work with strings
that are stored in the Program Space.

For example if you want to copy the string from Program Space to a buffer in RAM
(like an automatic variable inside a function, that is allocated on the stack), you can do
this:

void foo (void)
{
char buffer[10];

for (unsigned char i = 0; i < 5; 1i++)
{
strcpy_P (buffer, (PGM_P)pgm_read_word (& (string_table[i])));

// Display buffer on LCD.
}

return;

Here, the string_table array is stored in Program Space, so we access it normally,
as if were stored in Data Space, then take the address of the location we want to access,
and use the address as a parameter to pgm_read_word. We use the pgm_read_-
word macro to read the string pointer out of the string_table array. Remember
that a pointer is 16-bits, or word size. The pgm_read_word macro will return a 16-
bit unsigned integer. We then have to typecast it as a true pointer to program memory,
PGM_P. This pointer is an address in Program Space pointing to the string that we
want to copy. This pointer is then used as a parameter to the function st rcpy_P. The
function strcpy_P is just like the regular st rcpy function, except that it copies a
string from Program Space (the second parameter) to a buffer in the Data Space (the
first parameter).

There are many string functions available that work with strings located in Program
Space. All of these special string functions have a suffix of _P in the function name,
and are declared in the <avr/pgmspace.h> header file.

5.5 Caveats

The macros and functions used to retrieve data from the Program Space have to gen-
erate some extra code in order to actually load the data from the Program Space. This
incurs some extra overhead in terms of code space (extra opcodes) and execution time.
Usually, both the space and time overhead is minimal compared to the space savings
of putting data in Program Space. But you should be aware of this so you can mini-
mize the number of calls within a single function that gets the same piece of data from
Program Space. It is always instructive to look at the resulting disassembly from the
compiler.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

6 avr-libc and assembler programs 33

6 avr-libc and assembler programs

6.1 Introduction

There might be several reasons to write code for AVR microcontrollers using plain
assembler source code. Among them are:

* Code for devices that do not have RAM and are thus not supported by the C
compiler.

* Code for very time-critical applications.

 Special tweaks that cannot be done in C.

Usually, all but the first could probably be done easily using the inline assembler facility
of the compiler.

Although avr-libc is primarily targeted to support programming AVR microcontrollers
using the C (and C++) language, there’s limited support for direct assembler usage as
well. The benefits of it are:

* Use of the C preprocessor and thus the ability to use the same symbolic constants
that are available to C programs, as well as a flexible macro concept that can use
any valid C identifier as a macro (whereas the assembler’s macro concept is
basically targeted to use a macro in place of an assembler instruction).

* Use of the runtime framework like automatically assigning interrupt vectors. For
devices that have RAM, initializing the RAM variables can also be utilized.

6.2 Invoking the compiler

For the purpose described in this document, the assembler and linker are usually not
invoked manually, but rather using the C compiler frontend (avr—gcc) that in turn
will call the assembler and linker as required.

This approach has the following advantages:

* There is basically only one program to be called directly, avr—gcc, regardless
of the actual source language used.

* The invokation of the C preprocessor will be automatic, and will include the
appropriate options to locate required include files in the filesystem.

* The invokation of the linker will be automatic, and will include the appropri-
ate options to locate additional libraries as well as the application start-up code
(crtXXX. o) and linker script.

Note that the invokation of the C preprocessor will be automatic when the filename
provided for the assembler file ends in .S (the capital letter "s"). This would even apply
to operating systems that use case-insensitive filesystems since the actual decision is

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

6.3 Example program 34

made based on the case of the filename suffix given on the command-line, not based on
the actual filename from the file system.

As an alternative to using .S, the suffix .sx is recognized for this purpose (starting
with GCC 4.3.0). This is primarily meant to be compatible with other compiler envi-
ronments that have been providing this variant before in order to cope with operating
systems where filenames are case-insensitive (and, with some versions of make that
could not distinguish between .s and .S on such systems).

Alternatively, the language can explicitly be specified using the -x
assembler-with-cpp option.

6.3 Example program

The following annotated example features a simple 100 kHz square wave generator
using an AT90S1200 clocked with a 10.7 MHz crystal. Pin PD6 will be used for the
square wave output.

#include <avr/io.h> ; Note [1]
work = 16 ; Note [2]
tmp = 17
inttmp = 19
intsav = 0
SQUARE = PD6 ; Note [3]
; Note [4]:
tmconst= 10700000 / 200000 ; 100 kHz => 200000 edges/s
fuzz= 8 ; # clocks in ISR until TCNTO is set

.section .text

.global main ; Note [5]
main:

rcall ioinit
1:

rjmp 1b ; Note [6]

.global TIMERO_OVF_vect ; Note [7]

TIMERO_OVF_vect:
1di inttmp, 256 - tmconst + fuzz
out _SFR_IO_ADDR(TCNTO), inttmp ; Note [8]

in intsav, _SFR_TIO_ADDR (SREG) ; Note [9]
sbic _SFR_TIO_ADDR (PORTD), SQUARE
rjmp 1f
sbi _SFR_IO_ADDR(PORTD), SQUARE
rjmp 2f
1: cbi _SFR_IO_ADDR(PORTD), SQUARE

out _SFR_IO_ADDR(SREG), intsav
reti

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

6.3 Example program 35

ioinit:
sbi _SFR_IO_ADDR(DDRD), SQUARE

1di work, _BV(TOIEO)
out _SFR_TIO_ADDR(TIMSK), work

1di work, _BV(CS00) ; tmrO0: CK/1
out _SFR_IO_ADDR(TCCRO), work

1di work, 256 - tmconst
out _SFR_IO_ADDR(TCNTO), work

sei

ret

.global __vector_default ; Note [10]
__vector_default:

reti

.end

Note [1]

As in C programs, this includes the central processor-specific file containing the IO port
definitions for the device. Note that not all include files can be included into assembler
sources.

Note [2]

Assignment of registers to symbolic names used locally. Another option would be to
use a C preprocessor macro instead:

#define work 16

Note [3]

Our bit number for the square wave output. Note that the right-hand side consists of a
CPP macro which will be substituted by its value (6 in this case) before actually being
passed to the assembler.

Note [4]

The assembler uses integer operations in the host-defined integer size (32 bits or longer)
when evaluating expressions. This is in contrast to the C compiler that uses the C type
int by default in order to calculate constant integer expressions.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

6.3 Example program 36

In order to get a 100 kHz output, we need to toggle the PD6 line 200000 times per
second. Since we use timer 0 without any prescaling options in order to get the de-
sired frequency and accuracy, we already run into serious timing considerations: while
accepting and processing the timer overflow interrupt, the timer already continues to
count. When pre-loading the TCCNTO register, we therefore have to account for the
number of clock cycles required for interrupt acknowledge and for the instructions to
reload TCCNTO (4 clock cycles for interrupt acknowledge, 2 cycles for the jump from
the interrupt vector, 2 cycles for the 2 instructions that reload TCCNTO). This is what
the constant fuzz is for.

Note [5]

External functions need to be declared to be .global. main is the application entry
point that will be jumped to from the ininitalization routine in crts1200. o.

Note [6]

The main loop is just a single jump back to itself. Square wave generation itself is
completely handled by the timer 0 overflow interrupt service. A sleep instruction
(using idle mode) could be used as well, but probably would not conserve much energy
anyway since the interrupt service is executed quite frequently.

Note [7]

Interrupt functions can get the usual names that are also available to C programs. The
linker will then put them into the appropriate interrupt vector slots. Note that they must
be declared .global in order to be acceptable for this purpose. This will only work if
<avr/io.h> has been included. Note that the assembler or linker have no chance
to check the correct spelling of an interrupt function, so it should be double-checked.
(When analyzing the resulting object file using avr—ob jdump or avr—-nm, a name
like ___vector_N should appear, with N being a small integer number.)

Note [8]

As explained in the section about special function registers, the actual IO port address
should be obtained using the macro _SFR_TIO_ADDR. (The AT90S1200 does not have
RAM thus the memory-mapped approach to access the IO registers is not available. It
would be slower than using in / out instructions anyway.)

Since the operation to reload TCCNTO is time-critical, it is even performed before
saving SREG. Obviously, this requires that the instructions involved would not change
any of the flag bits in SREG.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

6.4 Pseudo-ops and operators 37

Note [9]

Interrupt routines must not clobber the global CPU state. Thus, it is usually necessary
to save at least the state of the flag bits in SREG. (Note that this serves as an example
here only since actually, all the following instructions would not modify SREG either,
but that’s not commonly the case.)

Also, it must be made sure that registers used inside the interrupt routine do not conflict
with those used outside. In the case of a RAM-Iless device like the AT90S1200, this can
only be done by agreeing on a set of registers to be used exclusively inside the interrupt
routine; there would not be any other chance to "save" a register anywhere.

If the interrupt routine is to be linked together with C modules, care must be taken
to follow the register usage guidelines imposed by the C compiler. Also, any register
modified inside the interrupt sevice needs to be saved, usually on the stack.

Note [10]

As explained in Interrupts, a global "catch-all" interrupt handler that gets all unassigned
interrupt vectors can be installed using the name __vector_default. This must
be .global, and obviously, should end in a reti instruction. (By default, a jump to
location 0 would be implied instead.)

6.4 Pseudo-ops and operators

The available pseudo-ops in the assembler are described in the GNU assembler (gas)
manual. The manual can be found online as part of the current binutils release under
http://sources.redhat.com/binutils/.

As gas comes from a Unix origin, its pseudo-op and overall assembler syntax is slightly
different than the one being used by other assemblers. Numeric constants follow the C
notation (prefix 0x for hexadecimal constants), expressions use a C-like syntax.

Some common pseudo-ops include:
* .byte allocates single byte constants
» .ascii allocates a non-terminated string of characters
« .asciz allocates a \O-terminated string of characters (C string)
¢ .data switches to the .data section (initialized RAM variables)
e .text switches to the .text section (code and ROM constants)

* .set declares a symbol as a constant expression (identical to .equ)

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

http://sources.redhat.com/binutils/.

7 Inline Assembler Cookbook 38

* .global (or .globl) declares a public symbol that is visible to the linker (e. g.
function entry point, global variable)

« .extern declares a symbol to be externally defined; this is effectively a comment
only, as gas treats all undefined symbols it encounters as globally undefined any-
way

Note that .org is available in gas as well, but is a fairly pointless pseudo-op in an as-
sembler environment that uses relocatable object files, as it is the linker that determines
the final position of some object in ROM or RAM.

Along with the architecture-independent standard operators, there are some AVR-
specific operators available which are unfortunately not yet described in the official
documentation. The most notable operators are:

* 108 Takes the least significant 8 bits of a 16-bit integer
* hi8 Takes the most significant 8 bits of a 16-bit integer

* pm Takes a program-memory (ROM) address, and converts it into a RAM ad-
dress. This implies a division by 2 as the AVR handles ROM addresses as 16-bit
words (e.g. in an ITJMP or ICALL instruction), and can also handle relocatable
symbols on the right-hand side.

Example:

1di r24, lo8 (pm(somefunc))
1di r25, hi8 (pm(somefunc))
call something

This passes the address of function somefunc as the first parameter to function
something.

7 Inline Assembler Cookbook

AVR-GCC
Inline Assembler Cookbook
About this Document

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly
language code into C programs. This cool feature may be used for manually optimizing
time critical parts of the software or to use specific processor instruction, which are not
available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it
may take some time to figure out the implementation details by studying the compiler
and assembler source code. There are also a few sample programs available in the net.
Hopefully this document will help to increase their number.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.1 GCC asm Statement 39

It’s assumed, that you are familiar with writing AVR assembler programs, because this
is not an AVR assembler programming tutorial. It’s not a C language tutorial either.

Note that this document does not cover file written completely in assembler language,
refer to avr-libc and assembler programs for this.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies. Permis-
sion is granted to copy and distribute modified versions of this manual provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

This document describes version 3.3 of the compiler. There may be some parts, which
hadn’t been completely understood by the author himself and not all samples had been
tested so far. Because the author is German and not familiar with the English language,
there are definitely some typos and syntax errors in the text. As a programmer the
author knows, that a wrong documentation sometimes might be worse than none. Any-
way, he decided to offer his little knowledge to the public, in the hope to get enough
response to improve this document. Feel free to contact the author via e-mail. For the
latest release check http://www.ethernut.de/.

Herne, 17th of May 2002 Harald Kipp harald.kipp-at-egnite.de

Note

As of 26th of July 2002, this document has been merged into the
documentation for avr-libc. The latest version is now available at
http://savannah.nongnu.org/projects/avr-libc/.

7.1 GCC asm Statement
Let’s start with a simple example of reading a value from port D:

asm("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTID)));

Each asm statement is devided by colons into (up to) four parts:

1. The assembler instructions, defined as a single string constant:
"in %0, %1"

2. A list of output operands, separated by commas. Our example uses just one:
"=r" (value)

3. A comma separated list of input operands. Again our example uses one operand
only:

"I" (_SFR_IO_ADDR (PORTD))

4. Clobbered registers, left empty in our example.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

http://www.ethernut.de/.
http://savannah.nongnu.org/projects/avr-libc/.

7.1 GCC asm Statement 40

You can write assembler instructions in much the same way as you would write assem-
bler programs. However, registers and constants are used in a different way if they refer
to expressions of your C program. The connection between registers and C operands is
specified in the second and third part of the a sm instruction, the list of input and output
operands, respectively. The general form is

asm(code : output operand list : input operand list [: clobber list]);

In the code section, operands are referenced by a percent sign followed by a single digit.
0 refers to the first 1 to the second operand and so forth. From the above example:

O refersto "=r" (value) and
1 refersto"I" (_SFR_IO_ADDR (PORTD)).

This may still look a little odd now, but the syntax of an operand list will be explained
soon. Let us first examine the part of a compiler listing which may have been generated
from our example:

1ds r24,value
/* #APP x/

in r24, 12
/% #NOAPP «*/

sts value,r24

The comments have been added by the compiler to inform the assembler that the in-
cluded code was not generated by the compilation of C statements, but by inline as-
sembler statements. The compiler selected register r24 for storage of the value read
from PORTD. The compiler could have selected any other register, though. It may not
explicitely load or store the value and it may even decide not to include your assembler
code at all. All these decisions are part of the compiler’s optimization strategy. For
example, if you never use the variable value in the remaining part of the C program,
the compiler will most likely remove your code unless you switched off optimization.
To avoid this, you can add the volatile attribute to the asm statement:

asm volatile("in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));

Alternatively, operands can be given names. The name is prepended in brackets to the
constraints in the operand list, and references to the named operand use the bracketed
name instead of a number after the % sign. Thus, the above example could also be
written as

asm("in %[retval], %[port]"
[retval] "=r" (value)
[port] "I"™ (_SFR_IO_ADDR(PORTD)));

The last part of the a sm instruction, the clobber list, is mainly used to tell the compiler
about modifications done by the assembler code. This part may be omitted, all other
parts are required, but may be left empty. If your assembler routine won’t use any
input or output operand, two colons must still follow the assembler code string. A
good example is a simple statement to disable interrupts:

asm volatile("cli"::);

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.2 Assembler Code 41

7.2 Assembler Code

You can use the same assembler instruction mnemonics as you’d use with any other
AVR assembler. And you can write as many assembler statements into one code string
as you like and your flash memory is able to hold.

Note

The available assembler directives vary from one assembler to another.

To make it more readable, you should put each statement on a seperate line:

asm volatile ("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
2) i

The linefeed and tab characters will make the assembler listing generated by the com-
piler more readable. It may look a bit odd for the first time, but that’s the way the
compiler creates it’s own assembler code.

You may also make use of some special registers.

Symbol Register

__SREG___ Status register at address 0x3F
__SP_H Stack pointer high byte at address 0x3E
_SP_L_ Stack pointer low byte at address 0x3D
_ tmp_reg_ Register 10, used for temporary storage
__zero_reg_ Register r1, always zero

Register r0 may be freely used by your assembler code and need not be restored at
the end of your code. It’s a good idea to use __tmp_reg___and __zero_reg___
instead of rO or rl, just in case a new compiler version changes the register usage
definitions.

7.3 Input and Output Operands

Each input and output operand is described by a constraint string followed by a C
expression in parantheses. AVR-GCC 3.3 knows the following constraint characters:

Note

The most up-to-date and detailed information on contraints for the avr can be found
in the gcc manual.

The x register is r27:r26, the y register is r29:r28, and the z register is
r31:r30

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.3 Input and Output Operands 42

Constraint Used for Range
a Simple upper registers rl6 to r23
b Base pointer registers y, Z
pairs
d Upper register rl6 tor31
e Pointer register pairs X, Y, Z
q Stack pointer register SPH:SPL
r Any register 10 to 131
t Temporary register 10
w Special upper register 24, 126, 128, 130
pairs
X Pointer register pair X X (r27:126)
y Pointer register pair Y y (r29:128)
z Pointer register pair Z z (r31:1r30)
G Floating point constant 0.0
1 6-bit positive integer 0to 63
constant
J 6-bit negative integer -63t0 0
constant
K Integer constant 2
L Integer constant 0
1 Lower registers r0torlS
M 8-bit integer constant 0to 255
N Integer constant -1
O Integer constant 8, 16, 24
P Integer constant 1
Q (GCC >=4.2x) A
memory address based
on Y or Z pointer with
displacement.
R (GCC >=4.3.x) Integer -6to5
constant.

The selection of the proper contraint depends on the range of the constants or registers,
which must be acceptable to the AVR instruction they are used with. The C compiler
doesn’t check any line of your assembler code. But it is able to check the constraint
against your C expression. However, if you specify the wrong constraints, then the
compiler may silently pass wrong code to the assembler. And, of course, the assembler
will fail with some cryptic output or internal errors. For example, if you specify the
constraint "r" and you are using this register with an "ori" instruction in your as-
sembler code, then the compiler may select any register. This will fail, if the compiler
chooses r2 to r15. (It will never choose r0 or r1, because these are uses for special
purposes.) That’s why the correct constraint in that case is "d". On the other hand, if
you use the constraint "M", the compiler will make sure that you don’t pass anything
else but an 8-bit value. Later on we will see how to pass multibyte expression results
to the assembler code.

The following table shows all AVR assembler mnemonics which require operands, and
the related contraints. Because of the improper constraint definitions in version 3.3,
they aren’t strict enough. There is, for example, no constraint, which restricts integer
constants to the range 0 to 7 for bit set and bit clear operations.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.3 Input and Output Operands

43

Mnemonic Constraints Mnemonic Constraints
adc I,r add r,r
adiw w,1 and I,r
andi d.M asr r

bclr 1 bld r.I
brbc I label brbs I,label
bset I bst r,

cbi LI cbr dI
com r cp I,r

cpe T cpi dM
cpse I,r dec r
elpm t,z eor I,r

in r,] inc r

Id r,e 1dd r,b

Idi dM 1ds r,]abel
lpm t,z Isl r

Isr r mov I,r
movw I,r mul r,r
neg r or I,r

ori d.M out ILr
pop r push r

rol r ror r

sbc I,r sbci d.M
sbi LI sbic LI
sbiw w,1 sbr d.M
sbrc r,I sbrs r,I

ser d st er

std b,r sts label,r
sub I,r subi d.M
swap r

Constraint characters may be prepended by a single constraint modifier. Contraints
without a modifier specify read-only operands. Modifiers are:

Modifier Specifies

= Write-only operand, usually used for all
output operands.

+ Read-write operand

& Register should be used for output only

Output operands must be write-only and the C expression result must be an lvalue,
which means that the operands must be valid on the left side of assignments. Note,
that the compiler will not check if the operands are of reasonable type for the kind of
operation used in the assembler instructions.

Input operands are, you guessed it, read-only. But what if you need the same operand
for input and output? As stated above, read-write operands are not supported in inline
assembler code. But there is another solution. For input operators it is possible to use
a single digit in the constraint string. Using digit n tells the compiler to use the same
register as for the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r" (value) : "O0" (value));

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.3 Input and Output Operands 44

This statement will swap the nibbles of an 8-bit variable named value. Constraint "0 "
tells the compiler, to use the same input register as for the first operand. Note however,
that this doesn’t automatically imply the reverse case. The compiler may choose the
same registers for input and output, even if not told to do so. This is not a problem in
most cases, but may be fatal if the output operator is modified by the assembler code
before the input operator is used. In the situation where your code depends on different
registers used for input and output operands, you must add the & constraint modifier to
your output operand. The following example demonstrates this problem:

asm volatile("in %0,%1" "\n\t"
"out %1, %2" "\n\t"
"—gr"™ (input)
"I" (_SFR_IO_ADDR(port)), "r" (output)
)i

In this example an input value is read from a port and then an output value is written to
the same port. If the compiler would have choosen the same register for input and out-
put, then the output value would have been destroyed on the first assembler instruction.
Fortunately, this example uses the & constraint modifier to instruct the compiler not to
select any register for the output value, which is used for any of the input operands.
Back to swapping. Here is the code to swap high and low byte of a 16-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %BO" "\n\t"
"mov %$B0, __tmp_reg__" "\n\t"

"=r" (value)

"0" (value)
)i

First you will notice the usage of register __tmp_reqg__, which we listed among
other special registers in the Assembler Code section. You can use this register without
saving its contents. Completely new are those letters A and B in $A0 and $BO0. In fact
they refer to two different 8-bit registers, both containing a part of value.

Another example to swap bytes of a 32-bit value:

asm volatile ("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %DO" "\n\t"
"mov %DO, tmp_reg__ " "\n\t"
"mov tmp_reg__, %BO" "\n\t"
"mov %BO, %CO" "\n\t"
"mov %CO0, __tmp_reg__" "\n\t"
"=r" (value)
"0" (value)

)

Instead of listing the same operand as both, input and output operand, it can also be
declared as a read-write operand. This must be applied to an output operand, and the
respective input operand list remains empty:

asm volatile ("mov __tmp_reg__, $A0" "\n\t"
"mov %$A0, %DO" "\n\t"
"mov %$D0, __tmp_reg__ " "\n\t"

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.4 Clobbers 45

"mov __tmp_reg__, %BO" "\n\t"

"mov $B0, %CO" "\n\t"

"mov %CO, tmp_reg__" "\n\t"
"+r" (value));

If operands do not fit into a single register, the compiler will automatically assign
enough registers to hold the entire operand. In the assembler code you use $A0 to refer
to the lowest byte of the first operand, $A1 to the lowest byte of the second operand
and so on. The next byte of the first operand will be $BO, the next byte $C0 and so on.

This also implies, that it is often neccessary to cast the type of an input operand to the
desired size.

A final problem may arise while using pointer register pairs. If you define an input

operand

"e" (ptr)

and the compiler selects register Z (r30:r31), then

%$A0 refers to r30 and

%$BO refers to r31.

But both versions will fail during the assembly stage of the compiler, if you explicitely

need 7, like in

1d r24,7

If you write

1d r24, %al

with a lower case a following the percent sign, then the compiler will create the proper
assembler line.

7.4 Clobbers

As stated previously, the last part of the asm statement, the list of clobbers, may be
omitted, including the colon seperator. However, if you are using registers, which
had not been passed as operands, you need to inform the compiler about this. The
following example will do an atomic increment. It increments an 8-bit value pointed
to by a pointer variable in one go, without being interrupted by an interrupt routine
or another thread in a multithreaded environment. Note, that we must use a pointer,
because the incremented value needs to be stored before interrupts are enabled.

asm volatile(

"Cli“ ll\n\tll
"1d r24, %a0" "\n\t"
"inc r24" "\n\t"
"st %a0, r24" "\n\t"
"Sei" "\n\t"

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.4 Clobbers

46

"e" (ptr)
"r24ll
) i

The compiler might produce the following code:

cli

1d r24, Z
inc r24
st 7, r24
sei

One easy solution to avoid clobbering register r24 is, to make use of the special tem-

porary register __tmp_reg___ defined by the compiler.

asm volatile(

"clill
"ld __tmp_reg__, %al"
"inc __tmp_reg__ "
"st %al0, __tmp_reg__"
"Sei“

nan (ptr)

)

"\n\t"
"\n\t"
"\n\t"
"\n\t"
"\n\t"

The compiler is prepared to reload this register next time it uses it. Another problem
with the above code is, that it should not be called in code sections, where interrupts
are disabled and should be kept disabled, because it will enable interrupts at the end.
We may store the current status, but then we need another register. Again we can solve
this without clobbering a fixed, but let the compiler select it. This could be done with
the help of a local C variable.

uint8_t s;
asm volatile (

"in %0, __SREG__"

n"eli"

"ld __tmp_reg___

, %al"

"inc __tmp_reg__ "

o

"st %al,
"out __SREG__,
N"=gr" (S)

e" (ptr)

tmp_

reg_ "

s0"

ll\n\tll
"\n\t"
"\n\t"
"\n\t"
"\n\t"
"\n\t"

Now every thing seems correct, but it isn’t really. The assembler code modifies the
variable, that ptr points to. The compiler will not recognize this and may keep its
value in any of the other registers. Not only does the compiler work with the wrong
value, but the assembler code does too. The C program may have modified the value
too, but the compiler didn’t update the memory location for optimization reasons. The

worst thing you can do in this case is:

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.5 Assembler Macros 47

uint8_t s;
asm volatile (

"in %0, __ _SREG__" "\n\t"
"Cli" "\n\t"
"1ld __tmp_reg__, %al" "\n\t"
"inc __tmp_reg__ " "\n\t"
"st %al, __tmp_reg__ " "\n\t"
"out __SREG__, %0" "\n\t"

neg " (s)

"e" (ptr)

"memory"

The special clobber "memory" informs the compiler that the assembler code may mod-
ify any memory location. It forces the compiler to update all variables for which the
contents are currently held in a register before executing the assembler code. And of
course, everything has to be reloaded again after this code.

In most situations, a much better solution would be to declare the pointer destination
itself volatile:

volatile uint8_t «ptr;

This way, the compiler expects the value pointed to by ptr to be changed and will
load it whenever used and store it whenever modified.

Situations in which you need clobbers are very rare. In most cases there will be better
ways. Clobbered registers will force the compiler to store their values before and reload
them after your assembler code. Avoiding clobbers gives the compiler more freedom
while optimizing your code.

7.5 Assembler Macros

In order to reuse your assembler language parts, it is useful to define them as macros
and put them into include files. AVR Libc comes with a bunch of them, which could be
found in the directory avr/include. Using such include files may produce compiler
warnings, if they are used in modules, which are compiled in strict ANSI mode. To
avoid that, you can write __asm___ instead of asm and __volatile_ instead of
volatile. These are equivalent aliases.

Another problem with reused macros arises if you are using labels. In such
cases you may make use of the special pattern =, which is replaced by a unique
number on each asm statement. The following code had been taken from
avr/include/iomacros.h:

#define loop_until bit_is_clear (port,bit) \
__asm___ _ _volatile_ (\
"L_%=: " "sbic %0, %1" "\n\t" \
"rimp L_%=" \
/* no outputs =/
"I" (_SFR_IO_ADDR (port)),
"I" (bit)

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.6 C Stub Functions 48

When used for the first time, L_= may be translated to I,_1404, the next usage might
create I_1405 or whatever. In any case, the labels became unique too.

Another option is to use Unix-assembler style numeric labels. They are explained in
How do I trace an assembler file in avr-gdb?. The above example would then look like:

#define loop_until_bit_is_clear (port,bit)

__asm__ _ volatile_ (
"l: " "sbic %0, %1" "\n\t"
"rjmp 1b"
/* no outputs =/
"I" (_SFR_IO_ADDR (port)),
wymn (blt)

7.6 C Stub Functions

Macro definitions will include the same assembler code whenever they are referenced.
This may not be acceptable for larger routines. In this case you may define a C stub
function, containing nothing other than your assembler code.

void delay (uint8_t ms)
{
uintl6_t cnt;
asm volatile (
ll\n"
"L_dl1%=:" "\n\t"
"mov $A0, $%A2" "\n\t"
"mov %BO, %B2" "\n"

"I[_dl2%=:" "\n\t"
"sbiw %A0, 1" "\n\t"
"pbrne L_d12%=" "\n\t"
"dec %1" "\n\t"
"pbrne L_d1l1%=" "\n\t"
"=&w" (cnt)
"r" (ms), "r" (delay_count)

)i

The purpose of this function is to delay the program execution by a specified number
of milliseconds using a counting loop. The global 16 bit variable delay_count must
contain the CPU clock frequency in Hertz divided by 4000 and must have been set
before calling this routine for the first time. As described in the clobber section, the
routine uses a local variable to hold a temporary value.

Another use for a local variable is a return value. The following function returns a 16
bit value read from two successive port addresses.

uintl6_t inw(uint8_t port)
{
uintl6_t result;
asm volatile (
"in %A0,%1" "\n\t"
"in %BO, (%1) + 1"
"=r" (result)
"I" (_SFR_IO_ADDR (port))

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

7.7 C Names Used in Assembler Code 49

)i
return result;

}

Note
inw() is supplied by avr-libc.

7.7 C Names Used in Assembler Code

By default AVR-GCC uses the same symbolic names of functions or variables in C and
assembler code. You can specify a different name for the assembler code by using a
special form of the asm statement:

unsigned long value asm("clock") = 3686400;

This statement instructs the compiler to use the symbol name clock rather than value.
This makes sense only for external or static variables, because local variables do not
have symbolic names in the assembler code. However, local variables may be held in
registers.

With AVR-GCC you can specify the use of a specific register:

void Count (void)
{

register unsigned char counter asm("r3");

some code...
asm volatile("clr r3");
. more code...

The assembler instruction, "clr r3", will clear the variable counter. AVR-GCC will
not completely reserve the specified register. If the optimizer recognizes that the vari-
able will not be referenced any longer, the register may be re-used. But the compiler
is not able to check wether this register usage conflicts with any predefined register. If
you reserve too many registers in this way, the compiler may even run out of registers
during code generation.

In order to change the name of a function, you need a prototype declaration, because
the compiler will not accept the a sm keyword in the function definition:

extern long Calc(void) asm ("CALCULATE");

Calling the function Calc () will create assembler instructions to call the function
CALCULATE.

7.8 Links

For a more thorough discussion of inline assembly usage, see the gcc user
manual. The latest version of the gcc manual is always available here:
http://gcc.gnu.org/onlinedocs/

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

http://gcc.gnu.org/onlinedocs/

8 How to Build a Library 50

8 How to Build a Library

8.1 Introduction

So you keep reusing the same functions that you created over and over? Tired of cut and
paste going from one project to the next? Would you like to reduce your maintenance
overhead? Then you’re ready to create your own library! Code reuse is a very laudable
goal. With some upfront investment, you can save time and energy on future projects
by having ready-to-go libraries. This chapter describes some background information,
design considerations, and practical knowledge that you will need to create and use
your own libraries.

8.2 How the Linker Works

The compiler compiles a single high-level language file (C language, for example) into
a single object module file. The linker (I1d) can only work with object modules to link
them together. Object modules are the smallest unit that the linker works with.

Typically, on the linker command line, you will specify a set of object modules (that
has been previously compiled) and then a list of libraries, including the Standard C
Library. The linker takes the set of object modules that you specify on the command
line and links them together. Afterwards there will probably be a set of "undefined
references". A reference is essentially a function call. An undefined reference is a
function call, with no defined function to match the call.

The linker will then go through the libraries, in order, to match the undefined references
with function definitions that are found in the libraries. If it finds the function that
matches the call, the linker will then link in the object module in which the function is
located. This part is important: the linker links in THE ENTIRE OBJECT MODULE in
which the function is located. Remember, the linker knows nothing about the functions
internal to an object module, other than symbol names (such as function names). The
smallest unit the linker works with is object modules.

When there are no more undefined references, the linker has linked everything and is
done and outputs the final application.

8.3 How to Design a Library

How the linker behaves is very important in designing a library. Ideally, you want to
design a library where only the functions that are called are the only functions to be
linked into the final application. This helps keep the code size to a minimum. In order
to do this, with the way the linker works, is to only write one function per code module.
This will compile to one function per object module. This is usually a very different
way of doing things than writing an application!

There are always exceptions to the rule. There are generally two cases where you
would want to have more than one function per object module.

The first is when you have very complementary functions that it doesn’t make much
sense to split them up. For example, malloc() and free(). If someone is going to use

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

8.4 Creating a Library 51

malloc(), they will very likely be using free() (or at least should be using free()). In this
case, it makes more sense to aggregate those two functions in the same object module.

The second case is when you want to have an Interrupt Service Routine (ISR) in your
library that you want to link in. The problem in this case is that the linker looks for
unresolved references and tries to resolve them with code in libraries. A reference is
the same as a function call. But with ISRs, there is no function call to initiate the ISR.
The ISR is placed in the Interrupt Vector Table (IVT), hence no call, no reference,
and no linking in of the ISR. In order to do this, you have to trick the linker in a way.
Aggregate the ISR, with another function in the same object module, but have the other
function be something that is required for the user to call in order to use the ISR, like
perhaps an initialization function for the subsystem, or perhaps a function that enables
the ISR in the first place.

8.4 Creating a Library

The librarian program is called ar (for "archiver") and is found in the GNU Binutils
project. This program will have been built for the AVR target and will therefore be
named avr—-ar.

The job of the librarian program is simple: aggregate a list of object modules into a
single library (archive) and create an index for the linker to use. The name that you
create for the library filename must follow a specific pattern: libname.a. The name part
is the unique part of the filename that you create. It makes it easier if the name part
relates to what the library is about. This name part must be prefixed by "lib", and it
must have a file extension of .a, for "archive". The reason for the special form of the
filename is for how the library gets used by the toolchain, as we will see later on.

Note

The filename is case-sensitive. Use a lowercase "lib" prefix, and a lowercase ".a"
as the file extension.

The command line is fairly simple:

avr—ar rcs <library name> <list of object modules>

The r command switch tells the program to insert the object modules into the archive
with replacement. The ¢ command line switch tells the program to create the archive.
And the s command line switch tells the program to write an object-file index into the
archive, or update an existing one. This last switch is very important as it helps the
linker to find what it needs to do its job.

Note

The command line switches are case sensitive! There are uppercase switches that
have completely different actions.

MFile and the WinAVR distribution contain a Makefile Template that includes the
necessary command lines to build a library. You will have to manually modify the
template to switch it over to build a library instead of an application.

See the GNU Binutils manual for more information on the ar program.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

8.5 Using a Library 52

8.5 Using a Library

To use a library, use the —1 switch on your linker command line. The string immedi-
ately following the -1 is the unique part of the library filename that the linker will link
in. For example, if you use:

-1lm

this will expand to the library filename:

libm.a

which happens to be the math library included in avr-libc.

If you use this on your linker command line:

—lprintf_flt

then the linker will look for a library called:

libprintf_flt.a

This is why naming your library is so important when you create it!

The linker will search libraries in the order that they appear on the command line.
Whichever function is found first that matches the undefined reference, it will be linked
in.

There are also command line switches that tell GCC which directory to look in (-L)
for the libraries that are specified to be linke in with —1.

See the GNU Binutils manual for more information on the GNU linker (Id) program.

9 Benchmarks

The results below can only give a rough estimate of the resources necessary for using
certain library functions. There is a number of factors which can both increase or
reduce the effort required:

» Expenses for preparation of operands and their stack are not considered.

¢ In the table, the size includes all additional functions (for example, function to
multiply two integers) but they are only linked from the library.

» Expenses of time of performance of some functions essentially depend on param-
eters of a call, for example, gsort() is recursive, and sprintf() receives parameters
in a stack.

* Different versions of the compiler can give a significant difference in code size
and execution time. For example, the dtostre() function, compiled with avr-gcc
3.4.6, requires 930 bytes. After transition to avr-gcc 4.2.3, the size become 1088
bytes.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

9.1 A few of libc functions. 53

9.1 A few of libc functions.

Avr-gcc version is 4.7.1

The size of function is given in view of all picked up functions. By default Avr-libc
is compiled with —-mcall-prologues option. In brackets the size without taking
into account modules of a prologue and an epilogue is resulted. Both of the size can
coincide, if function does not cause a prologue/epilogue.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

9.2 Math functions. 54

Function Units Avr2 Avr25 Avrd
atoi ("12345") Flash bytes 82 (82) 78 (78) 74 (74)

Stack bytes 2 2 2

MCU clocks 155 149 149
atol ("12345") Flash bytes 122 (122) 118 (118) 118 (118)

Stack bytes 2 2 2

MCU clocks 221 219 219
dtostre (1.2345, Flash bytes 1116 (1004) 1048 (938) 1048 (938)
s, 6, 0) Stack bytes 17 17 17

MCU clocks 1247 1105 1105
dtostrf (1.2345, Flash bytes 1616 (1616) 1508 (1508) 1508 (1508)
15,6,5) Stack bytes 38 38 38

MCU clocks 1634 1462 1462
itoa (12345, s, Flash bytes 110 (110) 102 (102) 102 (102)
10) Stack bytes 2 2 2

MCU clocks 879 875 875
Itoa (12345L, s, Flash bytes 134 (134) 126 (126) 126 (126)
10) Stack bytes 2 2 2

MCU clocks 1597 1593 1593
malloc (1) Flash bytes 768 (712) 714 (660) 714 (660)

Stack bytes 6 6 6

MCU clocks 215 201 201
realloc ((void Flash bytes 1284 (1172) 1174 (1064) 1174 (1064)
%)0, 1) Stack bytes 18 18 18

MCU clocks 305 286 286
gsort (s, Flash bytes 1252 (1140) 1022 (912) 1028 (918)
sizeof(s), 1, cmp) Stack bytes 42 42 42

MCU clocks 21996 19905 17541
sprintf_min (s, Flash bytes 1224 (1112) 1092 (982) 1088 (978)
"%d", 12345) Stack bytes 53 53 53

MCU clocks 1841 1694 1689
sprintf (s, "%d", Flash bytes 1614 (1502) 1476 (1366) 1454 (1344)
12345) Stack bytes 58 58 58

MCU clocks 1647 1552 1547
sprintf_flt (s, Flash bytes 3228 (3116) 2990 (2880) 2968 (2858)
"%e", 1.2345) Stack bytes 67 67 67

MCU clocks 2573 2311 2311
sscanf_min Flash bytes 1532 (1420) 1328 (1218) 1328 (1218)
("12345", "%d", Stack bytes 55 55 55
&i) MCU clocks 1607 1446 1446
sscanf ("12345", Flash bytes 2008 (1896) 1748 (1638) 1748 (1638)
"%d", &i) Stack bytes 55 55 55

MCU clocks 1610 1449 1449
sscanf Flash bytes 2008 (1896) 1748 (1638) 1748 (1638)
("point,color", Stack bytes 86 86 86
"%[a-z]", s) MCU clocks 3067 2806 2806
sscanf_flt Flash bytes 3464 (3352) 3086 (2976) 3070 (2960)
("1.2345", "%e", Stack bytes 71 71 71
&Xx) MCU clocks 2497 2281 2078
strtod ("1.2345", Flash bytes 1632 (1520) 1536 (1426) 1480 (1480)
&p) Stack bytes 20 20 21

MCU clocks 1235 1177 1124
strtol ("12345", Flash bytes 918 (806) 834 (724) 792 (792)
&p, 0) Stack bytes 22 22 28

MCU clocks 956 891 794

9.2 Math functions.

The table contains the number of MCU clocks to calculate a function with a given
argument(s). The main reason of a big difference between Avr2 and Avr4 is a hardware

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

10 Porting From IAR to AVR GCC 55

multiplication.

Function Avr2 Avrd
__addsf3 (1.234, 5.678) 113 108
__mulsf3 (1.234, 5.678) 375 138
__divsf3 (1.234, 5.678) 466 465
acos (0.54321) 4411 2455
asin (0.54321) 4517 2556
atan (0.54321) 4710 2271
atan2 (1.234, 5.678) 5270 2857
cbrt (1.2345) 2684 2555
ceil (1.2345) 177 177
cos (1.2345) 3387 1671
cosh (1.2345) 4922 2979
exp (1.2345) 4708 2765
fdim (5.678, 1.234) 111 111
floor (1.2345) 180 180
fmax (1.234, 5.678) 39 37
fmin (1.234, 5.678) 35 35
fmod (5.678, 1.234) 131 131
frexp (1.2345, 0) 42 41
hypot (1.234, 5.678) 1341 866
Idexp (1.2345, 6) 42 42
log (1.2345) 4142 2134
log10 (1.2345) 4498 2260
modf (1.2345, 0) 433 429
pow (1.234, 5.678) 9293 5047
round (1.2345) 150 150
sin (1.2345) 3353 1653
sinh (1.2345) 4946 3003
sqrt (1.2345) 494 492
tan (1.2345) 4381 2426
tanh (1.2345) 5126 3173
trunc (1.2345) 178 178

10 Porting From IAR to AVR GCC

10.1 Introduction

C language was designed to be a portable language. There two main types of port-
ing activities: porting an application to a different platform (OS and/or processor),
and porting to a different compiler. Porting to a different compiler can be exacerbated
when the application is an embedded system. For example, the C language Standard,
strangely, does not specify a standard for declaring and defining Interrupt Service Rou-
tines (ISRs). Different compilers have different ways of defining registers, some of
which use non-standard language constructs.

This chapter describes some methods and pointers on porting an AVR application built
with the IAR compiler to the GNU toolchain (AVR GCC). Note that this may not be

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

10.2 Registers 56

an exhaustive list.

10.2 Registers

IO header files contain identifiers for all the register names and bit names for a par-
ticular processor. IAR has individual header files for each processor and they must be
included when registers are being used in the code. For example:

#include <ioml69.h>

Note

IAR does not always use the same register names or bit names that are used in the
AVR datasheet.

AVR GCC also has individual IO header files for each processor. However, the ac-
tual processor type is specified as a command line flag to the compiler. (Using the
-mmcu=processor flag.) This is usually done in the Makefile. This allows you to
specify only a single header file for any processor type:

#include <avr/io.h>

Note

The forward slash in the <avr/io.h> file name that is used to separate subdirecto-
ries can be used on Windows distributions of the toolchain and is the recommended
method of including this file.

The compiler knows the processor type and through the single header file above, it can
pull in and include the correct individual IO header file. This has the advantage that you
only have to specify one generic header file, and you can easily port your application
to another processor type without having to change every file to include the new 10
header file.

The AVR toolchain tries to adhere to the exact names of the registers and names of
the bits found in the AVR datasheet. There may be some descrepencies between the
register names found in the IAR IO header files and the AVR GCC IO header files.

10.3 Interrupt Service Routines (ISRs)

As mentioned above, the C language Standard, strangely, does not specify a standard
way of declaring and defining an ISR. Hence, every compiler seems to have their own
special way of doing so.

TAR declares an ISR like so:

#pragma vector=TIMERO_OVF_vect
__interrupt void MotorPWMBottom /()
{

// code
}

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

10.4 Intrinsic Routines 57

In AVR GCC, you declare an ISR like so:

ISR(PCINT1_vect)
{

//code
}

AVR GCC uses the ISR macro to define an ISR. This macro requries the header file:

#include <avr/interrupt.h>

The names of the various interrupt vectors are found in the individual processor 10
header files that you must include with <avr/io.h>.

Note

The names of the interrupt vectors in AVR GCC has been changed to match the
names of the vectors in IAR. This significantly helps in porting applications from
IAR to AVR GCC.

10.4 Intrinsic Routines

IAR has a number of intrinsic routine such as

__enable_interrupts () __disable_interrupts() __watchdog_-
reset ()

These intrinsic functions compile to specific AVR opcodes (SEI, CLI, WDR).

There are equivalent macros that are used in AVR GCC, however they are not located
in a single include file.

AVR GCC has sei() for _ _enable_interrupts(), and cli()
for _ disable_interrupts(). Both of these macros are located in
<avr/interrupt.h>.

AVR GCC has the macro wdt_reset () in place of __watchdog_reset ().
However, there is a whole Watchdog Timer API available in AVR GCC that can be
found in <avr/wdt.h>.

10.5 Flash Variables
The C language was not designed for Harvard architecture processors with separate

memory spaces. This means that there are various non-standard ways to define a vari-
able whose data resides in the Program Memory (Flash).

IAR uses a non-standard keyword to declare a variable in Program Memory:

_ flash int mydatal] =

AVR GCC uses Variable Attributes to achieve the same effect:

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

10.6 Non-Returning main() 58

int mydata[] __attribute__ ((progmem))

Note

See the GCC User Manual for more information about Variable Attributes.

avr-libc provides a convenience macro for the Variable Attribute:

#include <avr/pgmspace.h>

int mydata[] PROGMEM =

Note

The PROGMEM macro expands to the Variable Attribute of progmem. This
macro requires that you include <avr/pgmspace.h>. This is the canonical
method for defining a variable in Program Space.

To read back flash data, use the pgm_read_x() macros defined in
<avr/pgmspace.h>. All Program Memory handling macros are defined
there.

There is also a way to create a method to define variables in Program Memory that is
common between the two compilers (IAR and AVR GCC). Create a header file that has
these definitions:

#1if defined(__ICCAVR__) // IAR C Compiler

#define FLASH_DECLARE (x) _ flash x

#endif

#1f defined(__GNUC__) // GNU Compiler

#define FLASH DECLARE (x) x __attribute_ ((__progmem__))
#endif

This code snippet checks for the IAR compiler or for the GCC compiler and defines a
macro FLASH_DECLARE (x) that will declare a variable in Program Memory using
the appropriate method based on the compiler that is being used. Then you would used
it like so:

FLASH_DECLARE (int mydatal[] = ...);

10.6 Non-Returning main()
To declare main() to be a non-returning function in IAR, it is done like this:

__C_task void main(void)
{
// code

}

To do the equivalent in AVR GCC, do this:

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

10.7 Locking Registers 59

void main(void) __attribute__ ((noreturn));

void main (void)
{

/...
}

Note

See the GCC User Manual for more information on Function Attributes.

In AVR GCC, a prototype for main() is required so you can declare the function at-
tribute to specify that the main() function is of type "noreturn". Then, define main() as
normal. Note that the return type for main() is now void.

10.7 Locking Registers

The TAR compiler allows a user to lock general registers from r15 and down by using
compiler options and this keyword syntax:

__regvar __no_init volatile unsigned int filteredTimeSinceCommutation @14;

This line locks r14 for use only when explicitly referenced in your code thorugh the var
name "filteredTimeSinceCommutation". This means that the compiler cannot dispose
of it at its own will.

To do this in AVR GCC, do this:

register unsigned char counter asm("r3");

Typically, it should be possible to use r2 through r15 that way.

Note

Do not reserve r0 or r1 as these are used internally by the compiler for a temporary
register and for a zero value.

Locking registers is not recommended in AVR GCC as it removes this register
from the control of the compiler, which may make code generation worse. Use at
your own risk.

11 Frequently Asked Questions

11.1 FAQ Index

1. My program doesn’t recognize a variable updated within an interrupt routine
2. I get "undefined reference to..." for functions like "sin()"

3. How to permanently bind a variable to a register?

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

111

FAQ Index 60

A

10.

11.
12.
13.
14.
15.
16.
17.
18.

19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

How to modify MCUCR or WDTCR early?
What is all this _BV() stuff about?
Can I use C++ on the AVR?

Shouldn’t I initialize all my variables?

. Why do some 16-bit timer registers sometimes get trashed?

How do I use a #define’d constant in an asm statement?

Why does the PC randomly jump around when single-stepping through my pro-
gram in avr-gdb?

How do I trace an assembler file in avr-gdb?

How do I pass an IO port as a parameter to a function?
What registers are used by the C compiler?

How do I put an array of strings completely in ROM?
How to use external RAM?

Which -O flag to use?

How do I relocate code to a fixed address?

My UART is generating nonsense! My ATmegal28 keeps crashing! Port F is
completely broken!

Why do all my "foo...bar" strings eat up the SRAM?

Why does the compiler compile an 8-bit operation that uses bitwise operators
into a 16-bit operation in assembly?

How to detect RAM memory and variable overlap problems?

Is it really impossible to program the ATtinyXX in C?

What is this "clock skew detected" message?

Why are (many) interrupt flags cleared by writing a logical 1?

Why have "programmed" fuses the bit value 0?

Which AVR-specific assembler operators are available?

Why are interrupts re-enabled in the middle of writing the stack pointer?
Why are there five different linker scripts?

How to add a raw binary image to linker output?

How do I perform a software reset of the AVR?

I am using floating point math. Why is the compiled code so big? Why does my
code not work?

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

11.2 My program doesn’t recognize a variable updated within an interrupt
routine 61

32. What pitfalls exist when writing reentrant code?
33. Why are some addresses of the EEPROM corrupted (usually address zero)?
34. Why is my baud rate wrong?

35. On a device with more than 128 KiB of flash, how to make function pointers
work?

36. Why is assigning ports in a "chain" a bad idea?

11.2 My program doesn’t recognize a variable updated within an
interrupt routine

When using the optimizer, in a loop like the following one:

uint8_t flag;

ISR (SOME_vect) |
flag = 1;
}

while (flag == 0) {

}

the compiler will typically access £1ag only once, and optimize further accesses com-
pletely away, since its code path analysis shows that nothing inside the loop could
change the value of £lag anyway. To tell the compiler that this variable could be
changed outside the scope of its code path analysis (e. g. from within an interrupt
routine), the variable needs to be declared like:

volatile uint8_t flag;

Back to FAQ Index.

11.3 1 get "undefined reference to..." for functions like ''sin()"

In order to access the mathematical functions that are declared in <math.h>, the
linker needs to be told to also link the mathematical library, 1ibm. a.

Typically, system libraries like 1ibm.a are given to the final C compiler command
line that performs the linking step by adding a flag —1m at the end. (That is, the initial
lib and the filename suffix from the library are written immediately after a -/ flag. So
for a 1ibfoo.a library, —1foo needs to be provided.) This will make the linker
search the library in a path known to the system.

An alternative would be to specify the full path to the 1ibm. a file at the same place
on the command line, i. e. after all the object files (x.o0). However, since this re-
quires knowledge of where the build system will exactly find those library files, this is
deprecated for system libraries.

Back to FAQ Index.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

11.4 How to permanently bind a variable to a register? 62

11.4 How to permanently bind a variable to a register?

This can be done with

register unsigned char counter asm("r3");

Typically, it should be safe to use r2 through r7 that way.

Registers r8 through r15 can be used for argument passing by the compiler in case
many or long arguments are being passed to callees. If this is not the case throughout
the entire application, these registers could be used for register variables as well.

Extreme care should be taken that the entire application is compiled with a consistent
set of register-allocated variables, including possibly used library functions.

See C Names Used in Assembler Code for more details.

Back to FAQ Index.

11.5 How to modify MCUCR or WDTCR early?

The method of early initialization (MCUCR, WDTCR or anything else) is different (and
more flexible) in the current version. Basically, write a small assembler file which
looks like this:

;7 begin xram.S
#include <avr/io.h>
.section .initl,"ax",@progbits

1di rl6,_BV(SRE) | _BV (SRW)
out _SFR_IO_ADDR (MCUCR),rl6

;; end xram.S

Assemble it, link the resulting xram . o with other files in your program, and this piece
of code will be inserted in initialization code, which is run right after reset. See the
linker script for comments about the new . initN sections (which one to use, etc.).

The advantage of this method is that you can insert any initialization code you want
(just remember that this is very early startup -- no stack and no __zero_reg___ yet),
and no program memory space is wasted if this feature is not used.

There should be no need to modify linker scripts anymore, except for some very spe-
cial cases. It is best to leave __stack at its default value (end of internal SRAM
-- faster, and required on some devices like ATmegal61 because of errata), and add
-W1l,-Tdata, 0x801100 to start the data section above the stack.

For more information on using sections, see Memory Sections. There is also an ex-
ample for Using Sections in C Code. Note that in C code, any such function would
preferably be placed into section .init3 as the code in .init2 ensures the internal register
__zero_reg___is already cleared.

Back to FAQ Index.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

11.6 What is all this _BV() stuff about? 63

11.6 What is all this _BV() stuff about?

When performing low-level output work, which is a very central point in microcon-
troller programming, it is quite common that a particular bit needs to be set or cleared
in some IO register. While the device documentation provides mnemonic names for
the various bits in the IO registers, and the AVR device-specific 1O definitions reflect
these names in definitions for numerical constants, a way is needed to convert a bit
number (usually within a byte register) into a byte value that can be assigned directly
to the register. However, sometimes the direct bit numbers are needed as well (e. g. in
an SBI () instruction), so the definitions cannot usefully be made as byte values in the
first place.

So in order to access a particular bit number as a byte value, use the _BV () macro.
Of course, the implementation of this macro is just the usual bit shift (which is done
by the compiler anyway, thus doesn’t impose any run-time penalty), so the following
applies:

_BV(3) => 1 << 3 => 0x08

However, using the macro often makes the program better readable.
"BV" stands for "bit value", in case someone might ask you. :-)

Example: clock timer 2 with full IO clock (CS2x = 0b001), toggle OC2 output on
compare match (COM2x = 0b01), and clear timer on compare match (CTC2 = 1). Make
OC2 (PD7) an output.

TCCR2 = _BV(COM20) |_BV(CTC2) |_BV(Cs20);
DDRD = _BV(PD7);

Back to FAQ Index.

11.7 Can]I use C++ on the AVR?

Basically yes, C++ is supported (assuming your compiler has been configured and
compiled to support it, of course). Source files ending in .cc, .cpp or .C will automati-
cally cause the compiler frontend to invoke the C++ compiler. Alternatively, the C++
compiler could be explicitly called by the name avr—c++.

However, there’s currently no support for 1ibstdc++, the standard support library
needed for a complete C++ implementation. This imposes a number of restrictions on
the C++ programs that can be compiled. Among them are:

¢ Obviously, none of the C++ related standard functions, classes, and template
classes are available.

* The operators new and delete are not implemented, attempting to use them
will cause the linker to complain about undefined external references. (This
could perhaps be fixed.)

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

11.8 Shouldn’t I initialize all my variables? 64

* Some of the supplied include files are not C++ safe, i. e. they need to be wrapped
into

extern "C" { . . . }

(This could certainly be fixed, too.)

» Exceptions are not supported. Since exceptions are enabled by default in the
C++ frontend, they explicitly need to be turned off using —~fno—-exceptions
in the compiler options. Failing this, the linker will complain about an undefined
external reference to ___gxx_personality_sjo.

Constructors and destructors are supported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcon-
trollers, extra care should be taken to avoid unwanted side effects of the C++ calling
conventions like implied copy constructors that could be called upon function invo-
cation etc. These things could easily add up into a considerable amount of time and
program memory wasted. Thus, casual inspection of the generated assembler code
(using the —S compiler option) seems to be warranted.

Back to FAQ Index.

11.8 Shouldn’t I initialize all my variables?

Global and static variables are guaranteed to be initialized to O by the C standard.
avr—gcc does this by placing the appropriate code into section .init4 (see The .initN
Sections). With respect to the standard, this sentence is somewhat simplified (because
the standard allows for machines where the actual bit pattern used differs from all bits
being 0), but for the AVR target, in general, all integer-type variables are set to 0, all
pointers to a NULL pointer, and all floating-point variables to 0.0.

As long as these variables are not initialized (i. e. they don’t have an equal sign and
an initialization expression to the right within the definition of the variable), they go
into the .bss section of the file. This section simply records the size of the variable,
but otherwise doesn’t consume space, neither within the object file nor within flash
memory. (Of course, being a variable, it will consume space in the target’s SRAM.)

In contrast, global and static variables that have an initializer go into the .data section
of the file. This will cause them to consume space in the object file (in order to record
the initializing value), and in the flash ROM of the target device. The latter is needed
since the flash ROM is the only way that the compiler can tell the target device the
value this variable is going to be initialized to.

Now if some programmer "wants to make doubly sure" their variables really get a O
at program startup, and adds an initializer just containing 0 on the right-hand side,
they waste space. While this waste of space applies to virtually any platform C is
implemented on, it’s usually not noticeable on larger machines like PCs, while the
waste of flash ROM storage can be very painful on a small microcontroller like the
AVR.

So in general, variables should only be explicitly initialized if the initial value is non-
Zero.

Generated on Mon Jun 24 09:20:15 2019 for avr-libc by Doxygen

11.9 Why do some 16-bit timer registers sometimes get trashed? 65

Note

Recent versions of GCC are now smart enough to detect this situation, and revert
variables that are explicitly initialized to O to the .bss section. Still, other compilers
might not do that optimization, and as the C standard guarantees the initialization,
it is safe to rely on it.

Back to FAQ Index.

11.9 Why do some 16-bit timer registers sometimes get trashed?

Some of the timer-related 16-bit IO registers use a temporary register (called TEMP in
the Atmel datasheet) to guarantee an atomic access to the register despite the fact that
two