<html lang="en"> <head> <title>Common Predefined Macros - The C Preprocessor</title> <meta http-equiv="Content-Type" content="text/html"> <meta name="description" content="The C Preprocessor"> <meta name="generator" content="makeinfo 4.13"> <link title="Top" rel="start" href="index.html#Top"> <link rel="up" href="Predefined-Macros.html#Predefined-Macros" title="Predefined Macros"> <link rel="prev" href="Standard-Predefined-Macros.html#Standard-Predefined-Macros" title="Standard Predefined Macros"> <link rel="next" href="System_002dspecific-Predefined-Macros.html#System_002dspecific-Predefined-Macros" title="System-specific Predefined Macros"> <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> <!-- Copyright (C) 1987-2015 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation. A copy of the license is included in the section entitled ``GNU Free Documentation License''. This manual contains no Invariant Sections. The Front-Cover Texts are (a) (see below), and the Back-Cover Texts are (b) (see below). (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. --> <meta http-equiv="Content-Style-Type" content="text/css"> <style type="text/css"><!-- pre.display { font-family:inherit } pre.format { font-family:inherit } pre.smalldisplay { font-family:inherit; font-size:smaller } pre.smallformat { font-family:inherit; font-size:smaller } pre.smallexample { font-size:smaller } pre.smalllisp { font-size:smaller } span.sc { font-variant:small-caps } span.roman { font-family:serif; font-weight:normal; } span.sansserif { font-family:sans-serif; font-weight:normal; } --></style> </head> <body> <div class="node"> <a name="Common-Predefined-Macros"></a> <p> Next: <a rel="next" accesskey="n" href="System_002dspecific-Predefined-Macros.html#System_002dspecific-Predefined-Macros">System-specific Predefined Macros</a>, Previous: <a rel="previous" accesskey="p" href="Standard-Predefined-Macros.html#Standard-Predefined-Macros">Standard Predefined Macros</a>, Up: <a rel="up" accesskey="u" href="Predefined-Macros.html#Predefined-Macros">Predefined Macros</a> <hr> </div> <h4 class="subsection">3.7.2 Common Predefined Macros</h4> <p><a name="index-common-predefined-macros-61"></a> The common predefined macros are GNU C extensions. They are available with the same meanings regardless of the machine or operating system on which you are using GNU C or GNU Fortran. Their names all start with double underscores. <dl> <dt><code>__COUNTER__</code><dd>This macro expands to sequential integral values starting from 0. In conjunction with the <code>##</code> operator, this provides a convenient means to generate unique identifiers. Care must be taken to ensure that <code>__COUNTER__</code> is not expanded prior to inclusion of precompiled headers which use it. Otherwise, the precompiled headers will not be used. <br><dt><code>__GFORTRAN__</code><dd>The GNU Fortran compiler defines this. <br><dt><code>__GNUC__</code><dt><code>__GNUC_MINOR__</code><dt><code>__GNUC_PATCHLEVEL__</code><dd>These macros are defined by all GNU compilers that use the C preprocessor: C, C++, Objective-C and Fortran. Their values are the major version, minor version, and patch level of the compiler, as integer constants. For example, GCC 3.2.1 will define <code>__GNUC__</code> to 3, <code>__GNUC_MINOR__</code> to 2, and <code>__GNUC_PATCHLEVEL__</code> to 1. These macros are also defined if you invoke the preprocessor directly. <p><code>__GNUC_PATCHLEVEL__</code> is new to GCC 3.0; it is also present in the widely-used development snapshots leading up to 3.0 (which identify themselves as GCC 2.96 or 2.97, depending on which snapshot you have). <p>If all you need to know is whether or not your program is being compiled by GCC, or a non-GCC compiler that claims to accept the GNU C dialects, you can simply test <code>__GNUC__</code>. If you need to write code which depends on a specific version, you must be more careful. Each time the minor version is increased, the patch level is reset to zero; each time the major version is increased (which happens rarely), the minor version and patch level are reset. If you wish to use the predefined macros directly in the conditional, you will need to write it like this: <pre class="smallexample"> /* <span class="roman">Test for GCC > 3.2.0</span> */ #if __GNUC__ > 3 || \ (__GNUC__ == 3 && (__GNUC_MINOR__ > 2 || \ (__GNUC_MINOR__ == 2 && \ __GNUC_PATCHLEVEL__ > 0)) </pre> <p class="noindent">Another approach is to use the predefined macros to calculate a single number, then compare that against a threshold: <pre class="smallexample"> #define GCC_VERSION (__GNUC__ * 10000 \ + __GNUC_MINOR__ * 100 \ + __GNUC_PATCHLEVEL__) ... /* <span class="roman">Test for GCC > 3.2.0</span> */ #if GCC_VERSION > 30200 </pre> <p class="noindent">Many people find this form easier to understand. <br><dt><code>__GNUG__</code><dd>The GNU C++ compiler defines this. Testing it is equivalent to testing <code>(__GNUC__ && __cplusplus)<!-- /@w --></code>. <br><dt><code>__STRICT_ANSI__</code><dd>GCC defines this macro if and only if the <samp><span class="option">-ansi</span></samp> switch, or a <samp><span class="option">-std</span></samp> switch specifying strict conformance to some version of ISO C or ISO C++, was specified when GCC was invoked. It is defined to ‘<samp><span class="samp">1</span></samp>’. This macro exists primarily to direct GNU libc's header files to restrict their definitions to the minimal set found in the 1989 C standard. <br><dt><code>__BASE_FILE__</code><dd>This macro expands to the name of the main input file, in the form of a C string constant. This is the source file that was specified on the command line of the preprocessor or C compiler. <br><dt><code>__INCLUDE_LEVEL__</code><dd>This macro expands to a decimal integer constant that represents the depth of nesting in include files. The value of this macro is incremented on every ‘<samp><span class="samp">#include</span></samp>’ directive and decremented at the end of every included file. It starts out at 0, its value within the base file specified on the command line. <br><dt><code>__ELF__</code><dd>This macro is defined if the target uses the ELF object format. <br><dt><code>__VERSION__</code><dd>This macro expands to a string constant which describes the version of the compiler in use. You should not rely on its contents having any particular form, but it can be counted on to contain at least the release number. <br><dt><code>__OPTIMIZE__</code><dt><code>__OPTIMIZE_SIZE__</code><dt><code>__NO_INLINE__</code><dd>These macros describe the compilation mode. <code>__OPTIMIZE__</code> is defined in all optimizing compilations. <code>__OPTIMIZE_SIZE__</code> is defined if the compiler is optimizing for size, not speed. <code>__NO_INLINE__</code> is defined if no functions will be inlined into their callers (when not optimizing, or when inlining has been specifically disabled by <samp><span class="option">-fno-inline</span></samp>). <p>These macros cause certain GNU header files to provide optimized definitions, using macros or inline functions, of system library functions. You should not use these macros in any way unless you make sure that programs will execute with the same effect whether or not they are defined. If they are defined, their value is 1. <br><dt><code>__GNUC_GNU_INLINE__</code><dd>GCC defines this macro if functions declared <code>inline</code> will be handled in GCC's traditional gnu90 mode. Object files will contain externally visible definitions of all functions declared <code>inline</code> without <code>extern</code> or <code>static</code>. They will not contain any definitions of any functions declared <code>extern inline</code>. <br><dt><code>__GNUC_STDC_INLINE__</code><dd>GCC defines this macro if functions declared <code>inline</code> will be handled according to the ISO C99 standard. Object files will contain externally visible definitions of all functions declared <code>extern inline</code>. They will not contain definitions of any functions declared <code>inline</code> without <code>extern</code>. <p>If this macro is defined, GCC supports the <code>gnu_inline</code> function attribute as a way to always get the gnu90 behavior. Support for this and <code>__GNUC_GNU_INLINE__</code> was added in GCC 4.1.3. If neither macro is defined, an older version of GCC is being used: <code>inline</code> functions will be compiled in gnu90 mode, and the <code>gnu_inline</code> function attribute will not be recognized. <br><dt><code>__CHAR_UNSIGNED__</code><dd>GCC defines this macro if and only if the data type <code>char</code> is unsigned on the target machine. It exists to cause the standard header file <samp><span class="file">limits.h</span></samp> to work correctly. You should not use this macro yourself; instead, refer to the standard macros defined in <samp><span class="file">limits.h</span></samp>. <br><dt><code>__WCHAR_UNSIGNED__</code><dd>Like <code>__CHAR_UNSIGNED__</code>, this macro is defined if and only if the data type <code>wchar_t</code> is unsigned and the front-end is in C++ mode. <br><dt><code>__REGISTER_PREFIX__</code><dd>This macro expands to a single token (not a string constant) which is the prefix applied to CPU register names in assembly language for this target. You can use it to write assembly that is usable in multiple environments. For example, in the <code>m68k-aout</code> environment it expands to nothing, but in the <code>m68k-coff</code> environment it expands to a single ‘<samp><span class="samp">%</span></samp>’. <br><dt><code>__USER_LABEL_PREFIX__</code><dd>This macro expands to a single token which is the prefix applied to user labels (symbols visible to C code) in assembly. For example, in the <code>m68k-aout</code> environment it expands to an ‘<samp><span class="samp">_</span></samp>’, but in the <code>m68k-coff</code> environment it expands to nothing. <p>This macro will have the correct definition even if <samp><span class="option">-f(no-)underscores</span></samp> is in use, but it will not be correct if target-specific options that adjust this prefix are used (e.g. the OSF/rose <samp><span class="option">-mno-underscores</span></samp> option). <br><dt><code>__SIZE_TYPE__</code><dt><code>__PTRDIFF_TYPE__</code><dt><code>__WCHAR_TYPE__</code><dt><code>__WINT_TYPE__</code><dt><code>__INTMAX_TYPE__</code><dt><code>__UINTMAX_TYPE__</code><dt><code>__SIG_ATOMIC_TYPE__</code><dt><code>__INT8_TYPE__</code><dt><code>__INT16_TYPE__</code><dt><code>__INT32_TYPE__</code><dt><code>__INT64_TYPE__</code><dt><code>__UINT8_TYPE__</code><dt><code>__UINT16_TYPE__</code><dt><code>__UINT32_TYPE__</code><dt><code>__UINT64_TYPE__</code><dt><code>__INT_LEAST8_TYPE__</code><dt><code>__INT_LEAST16_TYPE__</code><dt><code>__INT_LEAST32_TYPE__</code><dt><code>__INT_LEAST64_TYPE__</code><dt><code>__UINT_LEAST8_TYPE__</code><dt><code>__UINT_LEAST16_TYPE__</code><dt><code>__UINT_LEAST32_TYPE__</code><dt><code>__UINT_LEAST64_TYPE__</code><dt><code>__INT_FAST8_TYPE__</code><dt><code>__INT_FAST16_TYPE__</code><dt><code>__INT_FAST32_TYPE__</code><dt><code>__INT_FAST64_TYPE__</code><dt><code>__UINT_FAST8_TYPE__</code><dt><code>__UINT_FAST16_TYPE__</code><dt><code>__UINT_FAST32_TYPE__</code><dt><code>__UINT_FAST64_TYPE__</code><dt><code>__INTPTR_TYPE__</code><dt><code>__UINTPTR_TYPE__</code><dd>These macros are defined to the correct underlying types for the <code>size_t</code>, <code>ptrdiff_t</code>, <code>wchar_t</code>, <code>wint_t</code>, <code>intmax_t</code>, <code>uintmax_t</code>, <code>sig_atomic_t</code>, <code>int8_t</code>, <code>int16_t</code>, <code>int32_t</code>, <code>int64_t</code>, <code>uint8_t</code>, <code>uint16_t</code>, <code>uint32_t</code>, <code>uint64_t</code>, <code>int_least8_t</code>, <code>int_least16_t</code>, <code>int_least32_t</code>, <code>int_least64_t</code>, <code>uint_least8_t</code>, <code>uint_least16_t</code>, <code>uint_least32_t</code>, <code>uint_least64_t</code>, <code>int_fast8_t</code>, <code>int_fast16_t</code>, <code>int_fast32_t</code>, <code>int_fast64_t</code>, <code>uint_fast8_t</code>, <code>uint_fast16_t</code>, <code>uint_fast32_t</code>, <code>uint_fast64_t</code>, <code>intptr_t</code>, and <code>uintptr_t</code> typedefs, respectively. They exist to make the standard header files <samp><span class="file">stddef.h</span></samp>, <samp><span class="file">stdint.h</span></samp>, and <samp><span class="file">wchar.h</span></samp> work correctly. You should not use these macros directly; instead, include the appropriate headers and use the typedefs. Some of these macros may not be defined on particular systems if GCC does not provide a <samp><span class="file">stdint.h</span></samp> header on those systems. <br><dt><code>__CHAR_BIT__</code><dd>Defined to the number of bits used in the representation of the <code>char</code> data type. It exists to make the standard header given numerical limits work correctly. You should not use this macro directly; instead, include the appropriate headers. <br><dt><code>__SCHAR_MAX__</code><dt><code>__WCHAR_MAX__</code><dt><code>__SHRT_MAX__</code><dt><code>__INT_MAX__</code><dt><code>__LONG_MAX__</code><dt><code>__LONG_LONG_MAX__</code><dt><code>__WINT_MAX__</code><dt><code>__SIZE_MAX__</code><dt><code>__PTRDIFF_MAX__</code><dt><code>__INTMAX_MAX__</code><dt><code>__UINTMAX_MAX__</code><dt><code>__SIG_ATOMIC_MAX__</code><dt><code>__INT8_MAX__</code><dt><code>__INT16_MAX__</code><dt><code>__INT32_MAX__</code><dt><code>__INT64_MAX__</code><dt><code>__UINT8_MAX__</code><dt><code>__UINT16_MAX__</code><dt><code>__UINT32_MAX__</code><dt><code>__UINT64_MAX__</code><dt><code>__INT_LEAST8_MAX__</code><dt><code>__INT_LEAST16_MAX__</code><dt><code>__INT_LEAST32_MAX__</code><dt><code>__INT_LEAST64_MAX__</code><dt><code>__UINT_LEAST8_MAX__</code><dt><code>__UINT_LEAST16_MAX__</code><dt><code>__UINT_LEAST32_MAX__</code><dt><code>__UINT_LEAST64_MAX__</code><dt><code>__INT_FAST8_MAX__</code><dt><code>__INT_FAST16_MAX__</code><dt><code>__INT_FAST32_MAX__</code><dt><code>__INT_FAST64_MAX__</code><dt><code>__UINT_FAST8_MAX__</code><dt><code>__UINT_FAST16_MAX__</code><dt><code>__UINT_FAST32_MAX__</code><dt><code>__UINT_FAST64_MAX__</code><dt><code>__INTPTR_MAX__</code><dt><code>__UINTPTR_MAX__</code><dt><code>__WCHAR_MIN__</code><dt><code>__WINT_MIN__</code><dt><code>__SIG_ATOMIC_MIN__</code><dd>Defined to the maximum value of the <code>signed char</code>, <code>wchar_t</code>, <code>signed short</code>, <code>signed int</code>, <code>signed long</code>, <code>signed long long</code>, <code>wint_t</code>, <code>size_t</code>, <code>ptrdiff_t</code>, <code>intmax_t</code>, <code>uintmax_t</code>, <code>sig_atomic_t</code>, <code>int8_t</code>, <code>int16_t</code>, <code>int32_t</code>, <code>int64_t</code>, <code>uint8_t</code>, <code>uint16_t</code>, <code>uint32_t</code>, <code>uint64_t</code>, <code>int_least8_t</code>, <code>int_least16_t</code>, <code>int_least32_t</code>, <code>int_least64_t</code>, <code>uint_least8_t</code>, <code>uint_least16_t</code>, <code>uint_least32_t</code>, <code>uint_least64_t</code>, <code>int_fast8_t</code>, <code>int_fast16_t</code>, <code>int_fast32_t</code>, <code>int_fast64_t</code>, <code>uint_fast8_t</code>, <code>uint_fast16_t</code>, <code>uint_fast32_t</code>, <code>uint_fast64_t</code>, <code>intptr_t</code>, and <code>uintptr_t</code> types and to the minimum value of the <code>wchar_t</code>, <code>wint_t</code>, and <code>sig_atomic_t</code> types respectively. They exist to make the standard header given numerical limits work correctly. You should not use these macros directly; instead, include the appropriate headers. Some of these macros may not be defined on particular systems if GCC does not provide a <samp><span class="file">stdint.h</span></samp> header on those systems. <br><dt><code>__INT8_C</code><dt><code>__INT16_C</code><dt><code>__INT32_C</code><dt><code>__INT64_C</code><dt><code>__UINT8_C</code><dt><code>__UINT16_C</code><dt><code>__UINT32_C</code><dt><code>__UINT64_C</code><dt><code>__INTMAX_C</code><dt><code>__UINTMAX_C</code><dd>Defined to implementations of the standard <samp><span class="file">stdint.h</span></samp> macros with the same names without the leading <code>__</code>. They exist the make the implementation of that header work correctly. You should not use these macros directly; instead, include the appropriate headers. Some of these macros may not be defined on particular systems if GCC does not provide a <samp><span class="file">stdint.h</span></samp> header on those systems. <br><dt><code>__SIZEOF_INT__</code><dt><code>__SIZEOF_LONG__</code><dt><code>__SIZEOF_LONG_LONG__</code><dt><code>__SIZEOF_SHORT__</code><dt><code>__SIZEOF_POINTER__</code><dt><code>__SIZEOF_FLOAT__</code><dt><code>__SIZEOF_DOUBLE__</code><dt><code>__SIZEOF_LONG_DOUBLE__</code><dt><code>__SIZEOF_SIZE_T__</code><dt><code>__SIZEOF_WCHAR_T__</code><dt><code>__SIZEOF_WINT_T__</code><dt><code>__SIZEOF_PTRDIFF_T__</code><dd>Defined to the number of bytes of the C standard data types: <code>int</code>, <code>long</code>, <code>long long</code>, <code>short</code>, <code>void *</code>, <code>float</code>, <code>double</code>, <code>long double</code>, <code>size_t</code>, <code>wchar_t</code>, <code>wint_t</code> and <code>ptrdiff_t</code>. <br><dt><code>__BYTE_ORDER__</code><dt><code>__ORDER_LITTLE_ENDIAN__</code><dt><code>__ORDER_BIG_ENDIAN__</code><dt><code>__ORDER_PDP_ENDIAN__</code><dd><code>__BYTE_ORDER__</code> is defined to one of the values <code>__ORDER_LITTLE_ENDIAN__</code>, <code>__ORDER_BIG_ENDIAN__</code>, or <code>__ORDER_PDP_ENDIAN__</code> to reflect the layout of multi-byte and multi-word quantities in memory. If <code>__BYTE_ORDER__</code> is equal to <code>__ORDER_LITTLE_ENDIAN__</code> or <code>__ORDER_BIG_ENDIAN__</code>, then multi-byte and multi-word quantities are laid out identically: the byte (word) at the lowest address is the least significant or most significant byte (word) of the quantity, respectively. If <code>__BYTE_ORDER__</code> is equal to <code>__ORDER_PDP_ENDIAN__</code>, then bytes in 16-bit words are laid out in a little-endian fashion, whereas the 16-bit subwords of a 32-bit quantity are laid out in big-endian fashion. <p>You should use these macros for testing like this: <pre class="smallexample"> /* <span class="roman">Test for a little-endian machine</span> */ #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ </pre> <br><dt><code>__FLOAT_WORD_ORDER__</code><dd><code>__FLOAT_WORD_ORDER__</code> is defined to one of the values <code>__ORDER_LITTLE_ENDIAN__</code> or <code>__ORDER_BIG_ENDIAN__</code> to reflect the layout of the words of multi-word floating-point quantities. <br><dt><code>__DEPRECATED</code><dd>This macro is defined, with value 1, when compiling a C++ source file with warnings about deprecated constructs enabled. These warnings are enabled by default, but can be disabled with <samp><span class="option">-Wno-deprecated</span></samp>. <br><dt><code>__EXCEPTIONS</code><dd>This macro is defined, with value 1, when compiling a C++ source file with exceptions enabled. If <samp><span class="option">-fno-exceptions</span></samp> is used when compiling the file, then this macro is not defined. <br><dt><code>__GXX_RTTI</code><dd>This macro is defined, with value 1, when compiling a C++ source file with runtime type identification enabled. If <samp><span class="option">-fno-rtti</span></samp> is used when compiling the file, then this macro is not defined. <br><dt><code>__USING_SJLJ_EXCEPTIONS__</code><dd>This macro is defined, with value 1, if the compiler uses the old mechanism based on <code>setjmp</code> and <code>longjmp</code> for exception handling. <br><dt><code>__GXX_EXPERIMENTAL_CXX0X__</code><dd>This macro is defined when compiling a C++ source file with the option <samp><span class="option">-std=c++0x</span></samp> or <samp><span class="option">-std=gnu++0x</span></samp>. It indicates that some features likely to be included in C++0x are available. Note that these features are experimental, and may change or be removed in future versions of GCC. <br><dt><code>__GXX_WEAK__</code><dd>This macro is defined when compiling a C++ source file. It has the value 1 if the compiler will use weak symbols, COMDAT sections, or other similar techniques to collapse symbols with “vague linkage” that are defined in multiple translation units. If the compiler will not collapse such symbols, this macro is defined with value 0. In general, user code should not need to make use of this macro; the purpose of this macro is to ease implementation of the C++ runtime library provided with G++. <br><dt><code>__NEXT_RUNTIME__</code><dd>This macro is defined, with value 1, if (and only if) the NeXT runtime (as in <samp><span class="option">-fnext-runtime</span></samp>) is in use for Objective-C. If the GNU runtime is used, this macro is not defined, so that you can use this macro to determine which runtime (NeXT or GNU) is being used. <br><dt><code>__LP64__</code><dt><code>_LP64</code><dd>These macros are defined, with value 1, if (and only if) the compilation is for a target where <code>long int</code> and pointer both use 64-bits and <code>int</code> uses 32-bit. <br><dt><code>__SSP__</code><dd>This macro is defined, with value 1, when <samp><span class="option">-fstack-protector</span></samp> is in use. <br><dt><code>__SSP_ALL__</code><dd>This macro is defined, with value 2, when <samp><span class="option">-fstack-protector-all</span></samp> is in use. <br><dt><code>__SSP_STRONG__</code><dd>This macro is defined, with value 3, when <samp><span class="option">-fstack-protector-strong</span></samp> is in use. <br><dt><code>__SSP_EXPLICIT__</code><dd>This macro is defined, with value 4, when <samp><span class="option">-fstack-protector-explicit</span></samp> is in use. <br><dt><code>__SANITIZE_ADDRESS__</code><dd>This macro is defined, with value 1, when <samp><span class="option">-fsanitize=address</span></samp> or <samp><span class="option">-fsanitize=kernel-address</span></samp> are in use. <br><dt><code>__TIMESTAMP__</code><dd>This macro expands to a string constant that describes the date and time of the last modification of the current source file. The string constant contains abbreviated day of the week, month, day of the month, time in hh:mm:ss form, year and looks like <code>"Sun Sep 16 01:03:52 1973"<!-- /@w --></code>. If the day of the month is less than 10, it is padded with a space on the left. <p>If GCC cannot determine the current date, it will emit a warning message (once per compilation) and <code>__TIMESTAMP__</code> will expand to <code>"??? ??? ?? ??:??:?? ????"<!-- /@w --></code>. <br><dt><code>__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1</code><dt><code>__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2</code><dt><code>__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4</code><dt><code>__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8</code><dt><code>__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16</code><dd>These macros are defined when the target processor supports atomic compare and swap operations on operands 1, 2, 4, 8 or 16 bytes in length, respectively. <br><dt><code>__GCC_HAVE_DWARF2_CFI_ASM</code><dd>This macro is defined when the compiler is emitting Dwarf2 CFI directives to the assembler. When this is defined, it is possible to emit those same directives in inline assembly. <br><dt><code>__FP_FAST_FMA</code><dt><code>__FP_FAST_FMAF</code><dt><code>__FP_FAST_FMAL</code><dd>These macros are defined with value 1 if the backend supports the <code>fma</code>, <code>fmaf</code>, and <code>fmal</code> builtin functions, so that the include file <samp><span class="file">math.h</span></samp> can define the macros <code>FP_FAST_FMA</code>, <code>FP_FAST_FMAF</code>, and <code>FP_FAST_FMAL</code> for compatibility with the 1999 C standard. <br><dt><code>__GCC_IEC_559</code><dd>This macro is defined to indicate the intended level of support for IEEE 754 (IEC 60559) floating-point arithmetic. It expands to a nonnegative integer value. If 0, it indicates that the combination of the compiler configuration and the command-line options is not intended to support IEEE 754 arithmetic for <code>float</code> and <code>double</code> as defined in C99 and C11 Annex F (for example, that the standard rounding modes and exceptions are not supported, or that optimizations are enabled that conflict with IEEE 754 semantics). If 1, it indicates that IEEE 754 arithmetic is intended to be supported; this does not mean that all relevant language features are supported by GCC. If 2 or more, it additionally indicates support for IEEE 754-2008 (in particular, that the binary encodings for quiet and signaling NaNs are as specified in IEEE 754-2008). <p>This macro does not indicate the default state of command-line options that control optimizations that C99 and C11 permit to be controlled by standard pragmas, where those standards do not require a particular default state. It does not indicate whether optimizations respect signaling NaN semantics (the macro for that is <code>__SUPPORT_SNAN__</code>). It does not indicate support for decimal floating point or the IEEE 754 binary16 and binary128 types. <br><dt><code>__GCC_IEC_559_COMPLEX</code><dd>This macro is defined to indicate the intended level of support for IEEE 754 (IEC 60559) floating-point arithmetic for complex numbers, as defined in C99 and C11 Annex G. It expands to a nonnegative integer value. If 0, it indicates that the combination of the compiler configuration and the command-line options is not intended to support Annex G requirements (for example, because <samp><span class="option">-fcx-limited-range</span></samp> was used). If 1 or more, it indicates that it is intended to support those requirements; this does not mean that all relevant language features are supported by GCC. <br><dt><code>__NO_MATH_ERRNO__</code><dd>This macro is defined if <samp><span class="option">-fno-math-errno</span></samp> is used, or enabled by another option such as <samp><span class="option">-ffast-math</span></samp> or by default. </dl> </body></html>