<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <!-- This manual documents how to install and use the Multiple Precision Floating-Point Reliable Library, version 3.1.4. Copyright 1991, 1993-2016 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in GNU Free Documentation License. --> <!-- Created by GNU Texinfo 6.4, http://www.gnu.org/software/texinfo/ --> <head> <title>Floating-Point Values on Special Numbers (GNU MPFR 3.1.4)</title> <meta name="description" content="How to install and use GNU MPFR, a library for reliable multiple precision floating-point arithmetic, version 3.1.4."> <meta name="keywords" content="Floating-Point Values on Special Numbers (GNU MPFR 3.1.4)"> <meta name="resource-type" content="document"> <meta name="distribution" content="global"> <meta name="Generator" content="makeinfo"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <link href="index.html#Top" rel="start" title="Top"> <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> <link href="MPFR-Basics.html#MPFR-Basics" rel="up" title="MPFR Basics"> <link href="Exceptions.html#Exceptions" rel="next" title="Exceptions"> <link href="Rounding-Modes.html#Rounding-Modes" rel="prev" title="Rounding Modes"> <style type="text/css"> <!-- a.summary-letter {text-decoration: none} blockquote.indentedblock {margin-right: 0em} blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} blockquote.smallquotation {font-size: smaller} div.display {margin-left: 3.2em} div.example {margin-left: 3.2em} div.lisp {margin-left: 3.2em} div.smalldisplay {margin-left: 3.2em} div.smallexample {margin-left: 3.2em} div.smalllisp {margin-left: 3.2em} kbd {font-style: oblique} pre.display {font-family: inherit} pre.format {font-family: inherit} pre.menu-comment {font-family: serif} pre.menu-preformatted {font-family: serif} pre.smalldisplay {font-family: inherit; font-size: smaller} pre.smallexample {font-size: smaller} pre.smallformat {font-family: inherit; font-size: smaller} pre.smalllisp {font-size: smaller} span.nolinebreak {white-space: nowrap} span.roman {font-family: initial; font-weight: normal} span.sansserif {font-family: sans-serif; font-weight: normal} ul.no-bullet {list-style: none} --> </style> </head> <body lang="en"> <a name="Floating_002dPoint-Values-on-Special-Numbers"></a> <div class="header"> <p> Next: <a href="Exceptions.html#Exceptions" accesskey="n" rel="next">Exceptions</a>, Previous: <a href="Rounding-Modes.html#Rounding-Modes" accesskey="p" rel="prev">Rounding Modes</a>, Up: <a href="MPFR-Basics.html#MPFR-Basics" accesskey="u" rel="up">MPFR Basics</a> [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> <hr> <a name="Floating_002dPoint-Values-on-Special-Numbers-1"></a> <h3 class="section">4.5 Floating-Point Values on Special Numbers</h3> <p>This section specifies the floating-point values (of type <code>mpfr_t</code>) returned by MPFR functions (where by “returned” we mean here the modified value of the destination object, which should not be mixed with the ternary return value of type <code>int</code> of those functions). For functions returning several values (like <code>mpfr_sin_cos</code>), the rules apply to each result separately. </p> <p>Functions can have one or several input arguments. An input point is a mapping from these input arguments to the set of the MPFR numbers. When none of its components are NaN, an input point can also be seen as a tuple in the extended real numbers (the set of the real numbers with both infinities). </p> <p>When the input point is in the domain of the mathematical function, the result is rounded as described in Section “Rounding Modes” (but see below for the specification of the sign of an exact zero). Otherwise the general rules from this section apply unless stated otherwise in the description of the MPFR function (<a href="MPFR-Interface.html#MPFR-Interface">MPFR Interface</a>). </p> <p>When the input point is not in the domain of the mathematical function but is in its closure in the extended real numbers and the function can be extended by continuity, the result is the obtained limit. Examples: <code>mpfr_hypot</code> on (+Inf,0) gives +Inf. But <code>mpfr_pow</code> cannot be defined on (1,+Inf) using this rule, as one can find sequences (<em><var>x</var>_<var>n</var></em>,<em><var>y</var>_<var>n</var></em>) such that <em><var>x</var>_<var>n</var></em> goes to 1, <em><var>y</var>_<var>n</var></em> goes to +Inf and <em><var>x</var>_<var>n</var> to the <var>y</var>_<var>n</var></em> goes to any positive value when <var>n</var> goes to the infinity. </p> <p>When the input point is in the closure of the domain of the mathematical function and an input argument is +0 (resp. −0), one considers the limit when the corresponding argument approaches 0 from above (resp. below), if possible. If the limit is not defined (e.g., <code>mpfr_sqrt</code> and <code>mpfr_log</code> on −0), the behavior is specified in the description of the MPFR function, but must be consistent with the rule from the above paragraph (e.g., <code>mpfr_log</code> on ±0 gives −Inf). </p> <p>When the result is equal to 0, its sign is determined by considering the limit as if the input point were not in the domain: If one approaches 0 from above (resp. below), the result is +0 (resp. −0); for example, <code>mpfr_sin</code> on −0 gives −0 and <code>mpfr_acos</code> on 1 gives +0 (in all rounding modes). In the other cases, the sign is specified in the description of the MPFR function; for example <code>mpfr_max</code> on −0 and +0 gives +0. </p> <p>When the input point is not in the closure of the domain of the function, the result is NaN. Example: <code>mpfr_sqrt</code> on −17 gives NaN. </p> <p>When an input argument is NaN, the result is NaN, possibly except when a partial function is constant on the finite floating-point numbers; such a case is always explicitly specified in <a href="MPFR-Interface.html#MPFR-Interface">MPFR Interface</a>. Example: <code>mpfr_hypot</code> on (NaN,0) gives NaN, but <code>mpfr_hypot</code> on (NaN,+Inf) gives +Inf (as specified in <a href="Special-Functions.html#Special-Functions">Special Functions</a>), since for any finite or infinite input <var>x</var>, <code>mpfr_hypot</code> on (<var>x</var>,+Inf) gives +Inf. </p> <hr> <div class="header"> <p> Next: <a href="Exceptions.html#Exceptions" accesskey="n" rel="next">Exceptions</a>, Previous: <a href="Rounding-Modes.html#Rounding-Modes" accesskey="p" rel="prev">Rounding Modes</a>, Up: <a href="MPFR-Basics.html#MPFR-Basics" accesskey="u" rel="up">MPFR Basics</a> [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> </body> </html>