<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <!-- This manual describes how to install and use the GNU multiple precision arithmetic library, version 6.1.0. Copyright 1991, 1993-2015 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being "A GNU Manual", and with the Back-Cover Texts being "You have freedom to copy and modify this GNU Manual, like GNU software". A copy of the license is included in GNU Free Documentation License. --> <!-- Created by GNU Texinfo 6.4, http://www.gnu.org/software/texinfo/ --> <head> <title>Nth Root Algorithm (GNU MP 6.1.0)</title> <meta name="description" content="How to install and use the GNU multiple precision arithmetic library, version 6.1.0."> <meta name="keywords" content="Nth Root Algorithm (GNU MP 6.1.0)"> <meta name="resource-type" content="document"> <meta name="distribution" content="global"> <meta name="Generator" content="makeinfo"> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> <link href="index.html#Top" rel="start" title="Top"> <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> <link href="Root-Extraction-Algorithms.html#Root-Extraction-Algorithms" rel="up" title="Root Extraction Algorithms"> <link href="Perfect-Square-Algorithm.html#Perfect-Square-Algorithm" rel="next" title="Perfect Square Algorithm"> <link href="Square-Root-Algorithm.html#Square-Root-Algorithm" rel="prev" title="Square Root Algorithm"> <style type="text/css"> <!-- a.summary-letter {text-decoration: none} blockquote.indentedblock {margin-right: 0em} blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} blockquote.smallquotation {font-size: smaller} div.display {margin-left: 3.2em} div.example {margin-left: 3.2em} div.lisp {margin-left: 3.2em} div.smalldisplay {margin-left: 3.2em} div.smallexample {margin-left: 3.2em} div.smalllisp {margin-left: 3.2em} kbd {font-style: oblique} pre.display {font-family: inherit} pre.format {font-family: inherit} pre.menu-comment {font-family: serif} pre.menu-preformatted {font-family: serif} pre.smalldisplay {font-family: inherit; font-size: smaller} pre.smallexample {font-size: smaller} pre.smallformat {font-family: inherit; font-size: smaller} pre.smalllisp {font-size: smaller} span.nolinebreak {white-space: nowrap} span.roman {font-family: initial; font-weight: normal} span.sansserif {font-family: sans-serif; font-weight: normal} ul.no-bullet {list-style: none} --> </style> </head> <body lang="en"> <a name="Nth-Root-Algorithm"></a> <div class="header"> <p> Next: <a href="Perfect-Square-Algorithm.html#Perfect-Square-Algorithm" accesskey="n" rel="next">Perfect Square Algorithm</a>, Previous: <a href="Square-Root-Algorithm.html#Square-Root-Algorithm" accesskey="p" rel="prev">Square Root Algorithm</a>, Up: <a href="Root-Extraction-Algorithms.html#Root-Extraction-Algorithms" accesskey="u" rel="up">Root Extraction Algorithms</a> [<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> <hr> <a name="Nth-Root"></a> <h4 class="subsection">15.5.2 Nth Root</h4> <a name="index-Root-extraction-algorithm"></a> <a name="index-Nth-root-algorithm"></a> <p>Integer Nth roots are taken using Newton’s method with the following iteration, where <em>A</em> is the input and <em>n</em> is the root to be taken. </p> <div class="example"> <pre class="example"> 1 A a[i+1] = - * ( --------- + (n-1)*a[i] ) n a[i]^(n-1) </pre></div> <p>The initial approximation <em>a[1]</em> is generated bitwise by successively powering a trial root with or without new 1 bits, aiming to be just above the true root. The iteration converges quadratically when started from a good approximation. When <em>n</em> is large more initial bits are needed to get good convergence. The current implementation is not particularly well optimized. </p> </body> </html>