<html lang="en"> <head> <title>Nios II Options - Using the GNU Compiler Collection (GCC)</title> <meta http-equiv="Content-Type" content="text/html"> <meta name="description" content="Using the GNU Compiler Collection (GCC)"> <meta name="generator" content="makeinfo 4.13"> <link title="Top" rel="start" href="index.html#Top"> <link rel="up" href="Submodel-Options.html#Submodel-Options" title="Submodel Options"> <link rel="prev" href="NDS32-Options.html#NDS32-Options" title="NDS32 Options"> <link rel="next" href="Nvidia-PTX-Options.html#Nvidia-PTX-Options" title="Nvidia PTX Options"> <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> <!-- Copyright (C) 1988-2015 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with the Invariant Sections being ``Funding Free Software'', the Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled ``GNU Free Documentation License''. (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development.--> <meta http-equiv="Content-Style-Type" content="text/css"> <style type="text/css"><!-- pre.display { font-family:inherit } pre.format { font-family:inherit } pre.smalldisplay { font-family:inherit; font-size:smaller } pre.smallformat { font-family:inherit; font-size:smaller } pre.smallexample { font-size:smaller } pre.smalllisp { font-size:smaller } span.sc { font-variant:small-caps } span.roman { font-family:serif; font-weight:normal; } span.sansserif { font-family:sans-serif; font-weight:normal; } --></style> </head> <body> <div class="node"> <a name="Nios-II-Options"></a> <p> Next: <a rel="next" accesskey="n" href="Nvidia-PTX-Options.html#Nvidia-PTX-Options">Nvidia PTX Options</a>, Previous: <a rel="previous" accesskey="p" href="NDS32-Options.html#NDS32-Options">NDS32 Options</a>, Up: <a rel="up" accesskey="u" href="Submodel-Options.html#Submodel-Options">Submodel Options</a> <hr> </div> <h4 class="subsection">3.17.31 Nios II Options</h4> <p><a name="index-Nios-II-options-2135"></a><a name="index-Altera-Nios-II-options-2136"></a> These are the options defined for the Altera Nios II processor. <dl> <dt><code>-G </code><var>num</var><dd><a name="index-G-2137"></a><a name="index-smaller-data-references-2138"></a>Put global and static objects less than or equal to <var>num</var> bytes into the small data or BSS sections instead of the normal data or BSS sections. The default value of <var>num</var> is 8. <br><dt><code>-mgpopt=</code><var>option</var><br><dt><code>-mgpopt</code><dt><code>-mno-gpopt</code><dd><a name="index-mgpopt-2139"></a><a name="index-mno_002dgpopt-2140"></a>Generate (do not generate) GP-relative accesses. The following <var>option</var> names are recognized: <dl> <dt>‘<samp><span class="samp">none</span></samp>’<dd>Do not generate GP-relative accesses. <br><dt>‘<samp><span class="samp">local</span></samp>’<dd>Generate GP-relative accesses for small data objects that are not external or weak. Also use GP-relative addressing for objects that have been explicitly placed in a small data section via a <code>section</code> attribute. <br><dt>‘<samp><span class="samp">global</span></samp>’<dd>As for ‘<samp><span class="samp">local</span></samp>’, but also generate GP-relative accesses for small data objects that are external or weak. If you use this option, you must ensure that all parts of your program (including libraries) are compiled with the same <samp><span class="option">-G</span></samp> setting. <br><dt>‘<samp><span class="samp">data</span></samp>’<dd>Generate GP-relative accesses for all data objects in the program. If you use this option, the entire data and BSS segments of your program must fit in 64K of memory and you must use an appropriate linker script to allocate them within the addressible range of the global pointer. <br><dt>‘<samp><span class="samp">all</span></samp>’<dd>Generate GP-relative addresses for function pointers as well as data pointers. If you use this option, the entire text, data, and BSS segments of your program must fit in 64K of memory and you must use an appropriate linker script to allocate them within the addressible range of the global pointer. </dl> <p><samp><span class="option">-mgpopt</span></samp> is equivalent to <samp><span class="option">-mgpopt=local</span></samp>, and <samp><span class="option">-mno-gpopt</span></samp> is equivalent to <samp><span class="option">-mgpopt=none</span></samp>. <p>The default is <samp><span class="option">-mgpopt</span></samp> except when <samp><span class="option">-fpic</span></samp> or <samp><span class="option">-fPIC</span></samp> is specified to generate position-independent code. Note that the Nios II ABI does not permit GP-relative accesses from shared libraries. <p>You may need to specify <samp><span class="option">-mno-gpopt</span></samp> explicitly when building programs that include large amounts of small data, including large GOT data sections. In this case, the 16-bit offset for GP-relative addressing may not be large enough to allow access to the entire small data section. <br><dt><code>-mel</code><dt><code>-meb</code><dd><a name="index-mel-2141"></a><a name="index-meb-2142"></a>Generate little-endian (default) or big-endian (experimental) code, respectively. <br><dt><code>-mbypass-cache</code><dt><code>-mno-bypass-cache</code><dd><a name="index-mno_002dbypass_002dcache-2143"></a><a name="index-mbypass_002dcache-2144"></a>Force all load and store instructions to always bypass cache by using I/O variants of the instructions. The default is not to bypass the cache. <br><dt><code>-mno-cache-volatile</code><dt><code>-mcache-volatile</code><dd><a name="index-mcache_002dvolatile-2145"></a><a name="index-mno_002dcache_002dvolatile-2146"></a>Volatile memory access bypass the cache using the I/O variants of the load and store instructions. The default is not to bypass the cache. <br><dt><code>-mno-fast-sw-div</code><dt><code>-mfast-sw-div</code><dd><a name="index-mno_002dfast_002dsw_002ddiv-2147"></a><a name="index-mfast_002dsw_002ddiv-2148"></a>Do not use table-based fast divide for small numbers. The default is to use the fast divide at <samp><span class="option">-O3</span></samp> and above. <br><dt><code>-mno-hw-mul</code><dt><code>-mhw-mul</code><dt><code>-mno-hw-mulx</code><dt><code>-mhw-mulx</code><dt><code>-mno-hw-div</code><dt><code>-mhw-div</code><dd><a name="index-mno_002dhw_002dmul-2149"></a><a name="index-mhw_002dmul-2150"></a><a name="index-mno_002dhw_002dmulx-2151"></a><a name="index-mhw_002dmulx-2152"></a><a name="index-mno_002dhw_002ddiv-2153"></a><a name="index-mhw_002ddiv-2154"></a>Enable or disable emitting <code>mul</code>, <code>mulx</code> and <code>div</code> family of instructions by the compiler. The default is to emit <code>mul</code> and not emit <code>div</code> and <code>mulx</code>. <br><dt><code>-mcustom-</code><var>insn</var><code>=</code><var>N</var><dt><code>-mno-custom-</code><var>insn</var><dd><a name="index-mcustom_002d_0040var_007binsn_007d-2155"></a><a name="index-mno_002dcustom_002d_0040var_007binsn_007d-2156"></a>Each <samp><span class="option">-mcustom-</span><var>insn</var><span class="option">=</span><var>N</var></samp> option enables use of a custom instruction with encoding <var>N</var> when generating code that uses <var>insn</var>. For example, <samp><span class="option">-mcustom-fadds=253</span></samp> generates custom instruction 253 for single-precision floating-point add operations instead of the default behavior of using a library call. <p>The following values of <var>insn</var> are supported. Except as otherwise noted, floating-point operations are expected to be implemented with normal IEEE 754 semantics and correspond directly to the C operators or the equivalent GCC built-in functions (see <a href="Other-Builtins.html#Other-Builtins">Other Builtins</a>). <p>Single-precision floating point: <dl> <dt>‘<samp><span class="samp">fadds</span></samp>’, ‘<samp><span class="samp">fsubs</span></samp>’, ‘<samp><span class="samp">fdivs</span></samp>’, ‘<samp><span class="samp">fmuls</span></samp>’<dd>Binary arithmetic operations. <br><dt>‘<samp><span class="samp">fnegs</span></samp>’<dd>Unary negation. <br><dt>‘<samp><span class="samp">fabss</span></samp>’<dd>Unary absolute value. <br><dt>‘<samp><span class="samp">fcmpeqs</span></samp>’, ‘<samp><span class="samp">fcmpges</span></samp>’, ‘<samp><span class="samp">fcmpgts</span></samp>’, ‘<samp><span class="samp">fcmples</span></samp>’, ‘<samp><span class="samp">fcmplts</span></samp>’, ‘<samp><span class="samp">fcmpnes</span></samp>’<dd>Comparison operations. <br><dt>‘<samp><span class="samp">fmins</span></samp>’, ‘<samp><span class="samp">fmaxs</span></samp>’<dd>Floating-point minimum and maximum. These instructions are only generated if <samp><span class="option">-ffinite-math-only</span></samp> is specified. <br><dt>‘<samp><span class="samp">fsqrts</span></samp>’<dd>Unary square root operation. <br><dt>‘<samp><span class="samp">fcoss</span></samp>’, ‘<samp><span class="samp">fsins</span></samp>’, ‘<samp><span class="samp">ftans</span></samp>’, ‘<samp><span class="samp">fatans</span></samp>’, ‘<samp><span class="samp">fexps</span></samp>’, ‘<samp><span class="samp">flogs</span></samp>’<dd>Floating-point trigonometric and exponential functions. These instructions are only generated if <samp><span class="option">-funsafe-math-optimizations</span></samp> is also specified. </dl> <p>Double-precision floating point: <dl> <dt>‘<samp><span class="samp">faddd</span></samp>’, ‘<samp><span class="samp">fsubd</span></samp>’, ‘<samp><span class="samp">fdivd</span></samp>’, ‘<samp><span class="samp">fmuld</span></samp>’<dd>Binary arithmetic operations. <br><dt>‘<samp><span class="samp">fnegd</span></samp>’<dd>Unary negation. <br><dt>‘<samp><span class="samp">fabsd</span></samp>’<dd>Unary absolute value. <br><dt>‘<samp><span class="samp">fcmpeqd</span></samp>’, ‘<samp><span class="samp">fcmpged</span></samp>’, ‘<samp><span class="samp">fcmpgtd</span></samp>’, ‘<samp><span class="samp">fcmpled</span></samp>’, ‘<samp><span class="samp">fcmpltd</span></samp>’, ‘<samp><span class="samp">fcmpned</span></samp>’<dd>Comparison operations. <br><dt>‘<samp><span class="samp">fmind</span></samp>’, ‘<samp><span class="samp">fmaxd</span></samp>’<dd>Double-precision minimum and maximum. These instructions are only generated if <samp><span class="option">-ffinite-math-only</span></samp> is specified. <br><dt>‘<samp><span class="samp">fsqrtd</span></samp>’<dd>Unary square root operation. <br><dt>‘<samp><span class="samp">fcosd</span></samp>’, ‘<samp><span class="samp">fsind</span></samp>’, ‘<samp><span class="samp">ftand</span></samp>’, ‘<samp><span class="samp">fatand</span></samp>’, ‘<samp><span class="samp">fexpd</span></samp>’, ‘<samp><span class="samp">flogd</span></samp>’<dd>Double-precision trigonometric and exponential functions. These instructions are only generated if <samp><span class="option">-funsafe-math-optimizations</span></samp> is also specified. </dl> <p>Conversions: <dl> <dt>‘<samp><span class="samp">fextsd</span></samp>’<dd>Conversion from single precision to double precision. <br><dt>‘<samp><span class="samp">ftruncds</span></samp>’<dd>Conversion from double precision to single precision. <br><dt>‘<samp><span class="samp">fixsi</span></samp>’, ‘<samp><span class="samp">fixsu</span></samp>’, ‘<samp><span class="samp">fixdi</span></samp>’, ‘<samp><span class="samp">fixdu</span></samp>’<dd>Conversion from floating point to signed or unsigned integer types, with truncation towards zero. <br><dt>‘<samp><span class="samp">round</span></samp>’<dd>Conversion from single-precision floating point to signed integer, rounding to the nearest integer and ties away from zero. This corresponds to the <code>__builtin_lroundf</code> function when <samp><span class="option">-fno-math-errno</span></samp> is used. <br><dt>‘<samp><span class="samp">floatis</span></samp>’, ‘<samp><span class="samp">floatus</span></samp>’, ‘<samp><span class="samp">floatid</span></samp>’, ‘<samp><span class="samp">floatud</span></samp>’<dd>Conversion from signed or unsigned integer types to floating-point types. </dl> <p>In addition, all of the following transfer instructions for internal registers X and Y must be provided to use any of the double-precision floating-point instructions. Custom instructions taking two double-precision source operands expect the first operand in the 64-bit register X. The other operand (or only operand of a unary operation) is given to the custom arithmetic instruction with the least significant half in source register <var>src1</var> and the most significant half in <var>src2</var>. A custom instruction that returns a double-precision result returns the most significant 32 bits in the destination register and the other half in 32-bit register Y. GCC automatically generates the necessary code sequences to write register X and/or read register Y when double-precision floating-point instructions are used. <dl> <dt>‘<samp><span class="samp">fwrx</span></samp>’<dd>Write <var>src1</var> into the least significant half of X and <var>src2</var> into the most significant half of X. <br><dt>‘<samp><span class="samp">fwry</span></samp>’<dd>Write <var>src1</var> into Y. <br><dt>‘<samp><span class="samp">frdxhi</span></samp>’, ‘<samp><span class="samp">frdxlo</span></samp>’<dd>Read the most or least (respectively) significant half of X and store it in <var>dest</var>. <br><dt>‘<samp><span class="samp">frdy</span></samp>’<dd>Read the value of Y and store it into <var>dest</var>. </dl> <p>Note that you can gain more local control over generation of Nios II custom instructions by using the <code>target("custom-</code><var>insn</var><code>=</code><var>N</var><code>")</code> and <code>target("no-custom-</code><var>insn</var><code>")</code> function attributes (see <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>) or pragmas (see <a href="Function-Specific-Option-Pragmas.html#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>). <br><dt><code>-mcustom-fpu-cfg=</code><var>name</var><dd><a name="index-mcustom_002dfpu_002dcfg-2157"></a> This option enables a predefined, named set of custom instruction encodings (see <samp><span class="option">-mcustom-</span><var>insn</var></samp> above). Currently, the following sets are defined: <p><samp><span class="option">-mcustom-fpu-cfg=60-1</span></samp> is equivalent to: <pre class="smallexample"> -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254 -fsingle-precision-constant </pre> <p><samp><span class="option">-mcustom-fpu-cfg=60-2</span></samp> is equivalent to: <pre class="smallexample"> -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254 -mcustom-fdivs=255 -fsingle-precision-constant </pre> <p><samp><span class="option">-mcustom-fpu-cfg=72-3</span></samp> is equivalent to: <pre class="smallexample"> -mcustom-floatus=243 -mcustom-fixsi=244 -mcustom-floatis=245 -mcustom-fcmpgts=246 -mcustom-fcmples=249 -mcustom-fcmpeqs=250 -mcustom-fcmpnes=251 -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254 -mcustom-fdivs=255 -fsingle-precision-constant </pre> <p>Custom instruction assignments given by individual <samp><span class="option">-mcustom-</span><var>insn</var><span class="option">=</span></samp> options override those given by <samp><span class="option">-mcustom-fpu-cfg=</span></samp>, regardless of the order of the options on the command line. <p>Note that you can gain more local control over selection of a FPU configuration by using the <code>target("custom-fpu-cfg=</code><var>name</var><code>")</code> function attribute (see <a href="Function-Attributes.html#Function-Attributes">Function Attributes</a>) or pragma (see <a href="Function-Specific-Option-Pragmas.html#Function-Specific-Option-Pragmas">Function Specific Option Pragmas</a>). </dl> <p>These additional ‘<samp><span class="samp">-m</span></samp>’ options are available for the Altera Nios II ELF (bare-metal) target: <dl> <dt><code>-mhal</code><dd><a name="index-mhal-2158"></a>Link with HAL BSP. This suppresses linking with the GCC-provided C runtime startup and termination code, and is typically used in conjunction with <samp><span class="option">-msys-crt0=</span></samp> to specify the location of the alternate startup code provided by the HAL BSP. <br><dt><code>-msmallc</code><dd><a name="index-msmallc-2159"></a>Link with a limited version of the C library, <samp><span class="option">-lsmallc</span></samp>, rather than Newlib. <br><dt><code>-msys-crt0=</code><var>startfile</var><dd><a name="index-msys_002dcrt0-2160"></a><var>startfile</var> is the file name of the startfile (crt0) to use when linking. This option is only useful in conjunction with <samp><span class="option">-mhal</span></samp>. <br><dt><code>-msys-lib=</code><var>systemlib</var><dd><a name="index-msys_002dlib-2161"></a><var>systemlib</var> is the library name of the library that provides low-level system calls required by the C library, e.g. <code>read</code> and <code>write</code>. This option is typically used to link with a library provided by a HAL BSP. </dl> </body></html>